Skip to content

Commit

Permalink
[Feature][MMSIG] Add UniFormer Pose Estimation to Projects folder (#2501
Browse files Browse the repository at this point in the history
)
  • Loading branch information
xin-li-67 authored Jul 24, 2023
1 parent c94434b commit 85831b8
Show file tree
Hide file tree
Showing 9 changed files with 1,313 additions and 0 deletions.
138 changes: 138 additions & 0 deletions projects/uniformer/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
# Pose Estion with UniFormer

This project implements a topdown heatmap based human pose estimator, utilizing the approach outlined in **UniFormer: Unifying Convolution and Self-attention for Visual Recognition** (TPAMI 2023) and **UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning** (ICLR 2022).

<img src="https://raw.githubusercontent.com/Sense-X/UniFormer/main/figures/framework.png" alt><br>

<img src="https://raw.githubusercontent.com/Sense-X/UniFormer/main/figures/dense_adaption.jpg" alt><br>

## Usage

### Preparation

1. Setup Development Environment

- Python 3.7 or higher
- PyTorch 1.6 or higher
- [MMEngine](https://github.com/open-mmlab/mmengine) v0.6.0 or higher
- [MMCV](https://github.com/open-mmlab/mmcv) v2.0.0rc4 or higher
- [MMDetection](https://github.com/open-mmlab/mmdetection) v3.0.0rc6 or higher
- [MMPose](https://github.com/open-mmlab/mmpose) v1.0.0rc1 or higher

All the commands below rely on the correct configuration of `PYTHONPATH`, which should point to the project's directory so that Python can locate the module files. **In `uniformer/` root directory**, run the following line to add the current directory to `PYTHONPATH`:

```shell
export PYTHONPATH=`pwd`:$PYTHONPATH
```

2. Download Pretrained Weights

To either run inferences or train on the `uniformer pose estimation` project, you have to download the original Uniformer pretrained weights on the ImageNet1k dataset and the weights trained for the downstream pose estimation task. The original ImageNet1k weights are hosted on SenseTime's [huggingface repository](https://huggingface.co/Sense-X/uniformer_image), and the downstream pose estimation task weights are hosted either on Google Drive or Baiduyun. We have uploaded them to the OpenMMLab download URLs, allowing users to use them without burden. For example, you can take a look at [`td-hm_uniformer-b-8xb128-210e_coco-256x192.py`](./configs/td-hm_uniformer-b-8xb128-210e_coco-256x192.py#62), the corresponding pretrained weight URL is already here and when the training or testing process starts, the weight will be automatically downloaded to your device. For the downstream task weights, you can get their URLs from the [benchmark result table](#results).

### Inference

We have provided a [inferencer_demo.py](../../demo/inferencer_demo.py) with which developers can utilize to run quick inference demos. Here is a basic demonstration:

```shell
python demo/inferencer_demo.py $INPUTS \
--pose2d $CONFIG --pose2d-weights $CHECKPOINT \
[--show] [--vis-out-dir $VIS_OUT_DIR] [--pred-out-dir $PRED_OUT_DIR]
```

For more information on using the inferencer, please see [this document](https://mmpose.readthedocs.io/en/latest/user_guides/inference.html#out-of-the-box-inferencer).

Here's an example code:

```shell
python demo/inferencer_demo.py tests/data/coco/000000000785.jpg \
--pose2d projects/uniformer/configs/td-hm_uniformer-s-8xb128-210e_coco-256x192.py \
--pose2d-weights https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_256x192_global_small-d4a7fdac_20230724.pth \
--vis-out-dir vis_results
```

Then you will find the demo result in `vis_results` folder, and it may be similar to this:

<img src="https://github.com/open-mmlab/mmpose/assets/7219519/6f939457-d714-477a-9cc7-27aa98acc4af" height="360px" alt><br>

### Training and Testing

1. Data Preparation

Prepare the COCO dataset according to the [instruction](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#coco).

2. To Train and Test with Single GPU:

```shell
python tools/test.py $CONFIG --auto-scale-lr
```

```shell
python tools/test.py $CONFIG $CHECKPOINT
```

3. To Train and Test with Multiple GPUs:

```shell
bash tools/dist_train.sh $CONFIG $NUM_GPUs --amp
```

```shell
bash tools/dist_test.sh $CONFIG $CHECKPOINT $NUM_GPUs --amp
```

## Results

Here is the testing results on COCO val2017:

| Model | Input Size | AP | AP<sup>50</sup> | AP<sup>75</sup> | AR | AR<sup>50</sup> | Download |
| :-----------------------------------------------------------------: | :--------: | :--: | :-------------: | :-------------: | :--: | :-------------: | :--------------------------------------------------------------------: |
| [UniFormer-S](./configs/td-hm_uniformer-s-8xb128-210e_coco-256x192.py) | 256x192 | 74.0 | 90.2 | 82.1 | 79.5 | 94.1 | [model](https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_256x192_global_small-d4a7fdac_20230724.pth) \| [log](https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_256x192_global_small-d4a7fdac_20230724.log.json) |
| [UniFormer-S](./configs/td-hm_uniformer-s-8xb128-210e_coco-384x288.py) | 384x288 | 75.9 | 90.6 | 83.0 | 81.0 | 94.3 | [model](https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_384x288_global_small-7a613f78_20230724.pth) \| [log](https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_384x288_global_small-7a613f78_20230724.log.json) |
| [UniFormer-S](./configs/td-hm_uniformer-s-8xb64-210e_coco-448x320.py) | 448x320 | 76.2 | 90.6 | 83.2 | 81.4 | 94.4 | [model](https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_448x320_global_small-18b760de_20230724.pth) \| [log](https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_448x320_global_small-18b760de_20230724.log.json) |
| [UniFormer-B](./configs/td-hm_uniformer-b-8xb128-210e_coco-256x192.py) | 256x192 | 75.0 | 90.5 | 83.0 | 80.4 | 94.2 | [model](https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_256x192_global_base-1713bcd4_20230724.pth) \| [log](https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_256x192_global_base-1713bcd4_20230724.log.json) |
| [UniFormer-B](./configs/td-hm_uniformer-b-8xb32-210e_coco-384x288.py) | 384x288 | 76.7 | 90.8 | 84.1 | 81.9 | 94.6 | [model](https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_384x288_global_base-c650da38_20230724.pth) \| [log](https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_384x288_global_base-c650da38_20230724.log.json) |
| [UniFormer-B](./configs/td-hm_uniformer-b-8xb32-210e_coco-448x320.py) | 448x320 | 77.4 | 91.0 | 84.4 | 82.5 | 94.9 | [model](https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_448x320_global_base-a05c185f_20230724.pth) \| [log](https://download.openmmlab.com/mmpose/v1/projects/uniformer/top_down_448x320_global_base-a05c185f_20230724.log.json) |

Here is the testing results on COCO val 2017 from the official UniFormer Pose Estimation repository for comparison:

| Backbone | Input Size | AP | AP<sup>50</sup> | AP<sup>75</sup> | AR<sup>M</sup> | AR<sup>L</sup> | AR | Model | Log |
| :---------- | :--------- | :--- | :-------------- | :-------------- | :------------- | :------------- | :--- | :-------------------------------------------------------- | :------------------------------------------------------- |
| UniFormer-S | 256x192 | 74.0 | 90.3 | 82.2 | 66.8 | 76.7 | 79.5 | [google](https://drive.google.com/file/d/162R0JuTpf3gpLe1IK6oxRoQK7JSj4ylx/view?usp=sharing) | [google](https://drive.google.com/file/d/15j40u97Db6TA2gMHdn0yFEsDFb5SMBy4/view?usp=sharing) |
| UniFormer-S | 384x288 | 75.9 | 90.6 | 83.4 | 68.6 | 79.0 | 81.4 | [google](https://drive.google.com/file/d/163vuFkpcgVOthC05jCwjGzo78Nr0eikW/view?usp=sharing) | [google](https://drive.google.com/file/d/15X9M_5cq9RQMgs64Yn9YvV5k5f0zOBHo/view?usp=sharing) |
| UniFormer-S | 448x320 | 76.2 | 90.6 | 83.2 | 68.6 | 79.4 | 81.4 | [google](https://drive.google.com/file/d/165nQRsT58SXJegcttksHwDn46Fme5dGX/view?usp=sharing) | [google](https://drive.google.com/file/d/15IJjSWp4R5OybMdV2CZEUx_TwXdTMOee/view?usp=sharing) |
| UniFormer-B | 256x192 | 75.0 | 90.6 | 83.0 | 67.8 | 77.7 | 80.4 | [google](https://drive.google.com/file/d/15tzJaRyEzyWp2mQhpjDbBzuGoyCaJJ-2/view?usp=sharing) | [google](https://drive.google.com/file/d/15jJyTPcJKj_id0PNdytloqt7yjH2M8UR/view?usp=sharing) |
| UniFormer-B | 384x288 | 76.7 | 90.8 | 84.0 | 69.3 | 79.7 | 81.4 | [google](https://drive.google.com/file/d/15qtUaOR_C7-vooheJE75mhA9oJQt3gSx/view?usp=sharing) | [google](https://drive.google.com/file/d/15L1Uxo_uRSMlGnOvWzAzkJLKX6Qh_xNw/view?usp=sharing) |
| UniFormer-B | 448x320 | 77.4 | 91.1 | 84.4 | 70.2 | 80.6 | 82.5 | [google](https://drive.google.com/file/d/156iNxetiCk8JJz41aFDmFh9cQbCaMk3D/view?usp=sharing) | [google](https://drive.google.com/file/d/15aRpZc2Tie5gsn3_l-aXto1MrC9wyzMC/view?usp=sharing) |

Note:

1. All the original models are pretrained on ImageNet-1K without Token Labeling and Layer Scale, as mentioned in the [official README](https://github.com/Sense-X/UniFormer/tree/main/pose_estimation) . The official team has confirmed that **Token labeling can largely improve the performance of the downstream tasks**. Developers can utilize the implementation by themselves.
2. The original implementation did not include the **freeze BN in the backbone**. The official team has confirmed that this can improve the performance as well.
3. To avoid running out of memory, developers can use `torch.utils.checkpoint` in the `config.py` by setting `use_checkpoint=True` and `checkpoint_num=[0, 0, 2, 0] # index for using checkpoint in every stage`
4. We warmly welcome any contributions if you can successfully reproduce the results from the paper!

## Citation

If this project benefits your work, please kindly consider citing the original papers:

```bibtex
@misc{li2022uniformer,
title={UniFormer: Unifying Convolution and Self-attention for Visual Recognition},
author={Kunchang Li and Yali Wang and Junhao Zhang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao},
year={2022},
eprint={2201.09450},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```

```bibtex
@misc{li2022uniformer,
title={UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning},
author={Kunchang Li and Yali Wang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao},
year={2022},
eprint={2201.04676},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
_base_ = ['mmpose::_base_/default_runtime.py']

custom_imports = dict(imports='projects.uniformer.models')

# runtime
train_cfg = dict(max_epochs=210, val_interval=10)

# enable DDP training when pretrained model is used
find_unused_parameters = True

# optimizer
optim_wrapper = dict(optimizer=dict(
type='Adam',
lr=2e-3,
))

# learning policy
param_scheduler = [
dict(
type='LinearLR', begin=0, end=500, start_factor=0.001,
by_epoch=False), # warm-up
dict(
type='MultiStepLR',
begin=0,
end=210,
milestones=[170, 200],
gamma=0.1,
by_epoch=True)
]

# automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=1024)

# hooks
default_hooks = dict(
checkpoint=dict(save_best='coco/AP', rule='greater', interval=5))

# codec settings
codec = dict(
type='MSRAHeatmap', input_size=(192, 256), heatmap_size=(48, 64), sigma=2)

# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='TopdownPoseEstimator',
data_preprocessor=dict(
type='PoseDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),
backbone=dict(
type='UniFormer',
embed_dims=[64, 128, 320, 512],
depths=[5, 8, 20, 7],
head_dim=64,
drop_path_rate=0.4,
use_checkpoint=False, # whether use torch.utils.checkpoint
use_window=False, # whether use window MHRA
use_hybrid=False, # whether use hybrid MHRA
init_cfg=dict(
# Set the path to pretrained backbone here
type='Pretrained',
checkpoint='https://download.openmmlab.com/mmpose/v1/projects/'
'uniformer/uniformer_base_in1k.pth' # noqa
)),
head=dict(
type='HeatmapHead',
in_channels=512,
out_channels=17,
final_layer=dict(kernel_size=1),
loss=dict(type='KeypointMSELoss', use_target_weight=True),
decoder=codec),
test_cfg=dict(flip_test=True, flip_mode='heatmap', shift_heatmap=True))

# base dataset settings
dataset_type = 'CocoDataset'
data_mode = 'topdown'
data_root = 'data/coco/'

# pipelines
train_pipeline = [
dict(type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(type='RandomBBoxTransform'),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='GenerateTarget', encoder=codec),
dict(type='PackPoseInputs')
]
val_pipeline = [
dict(type='LoadImage'),
dict(type='GetBBoxCenterScale'),
dict(type='TopdownAffine', input_size=codec['input_size']),
dict(type='PackPoseInputs')
]

# data loaders
train_dataloader = dict(
batch_size=128,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='annotations/person_keypoints_train2017.json',
data_prefix=dict(img='train2017/'),
pipeline=train_pipeline,
))
val_dataloader = dict(
batch_size=256,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='annotations/person_keypoints_val2017.json',
bbox_file='data/coco/person_detection_results/'
'COCO_val2017_detections_AP_H_56_person.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=val_pipeline,
))
test_dataloader = val_dataloader

# evaluators
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/person_keypoints_val2017.json')
test_evaluator = val_evaluator
Loading

0 comments on commit 85831b8

Please sign in to comment.