-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
152 additions
and
44 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,83 +1,85 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
import argparse | ||
|
||
import torch | ||
from mmengine.config import Config, DictAction | ||
|
||
from mmpose.registry import MODELS | ||
from mmpose.utils import register_all_modules | ||
|
||
try: | ||
from fvcore.nn import (ActivationCountAnalysis, FlopCountAnalysis, | ||
flop_count_str, flop_count_table, parameter_count) | ||
from mmengine.analysis import get_model_complexity_info | ||
except ImportError: | ||
print('You may need to install fvcore for flops computation, ' | ||
'and you can use `pip install fvcore` to set up the environment') | ||
from fvcore.nn.print_model_statistics import _format_size | ||
from mmengine import Config | ||
|
||
from mmpose.models import build_pose_estimator | ||
from mmpose.utils import register_all_modules | ||
raise ImportError('Please upgrade mmcv to >0.6.2') | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser(description='Get model flops and params') | ||
parser.add_argument('config', help='config file path') | ||
parser = argparse.ArgumentParser(description='Train a detector') | ||
parser.add_argument('config', help='train config file path') | ||
parser.add_argument( | ||
'--shape', | ||
type=int, | ||
nargs='+', | ||
default=[256, 192], | ||
default=[1280, 800], | ||
help='input image size') | ||
parser.add_argument( | ||
'--cfg-options', | ||
nargs='+', | ||
action=DictAction, | ||
help='override some settings in the used config, the key-value pair ' | ||
'in xxx=yyy format will be merged into config file. If the value to ' | ||
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | ||
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | ||
'Note that the quotation marks are necessary and that no white space ' | ||
'is allowed.') | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def main(): | ||
|
||
register_all_modules() | ||
args = parse_args() | ||
|
||
if len(args.shape) == 1: | ||
input_shape = (3, args.shape[0], args.shape[0]) | ||
h = w = args.shape[0] | ||
elif len(args.shape) == 2: | ||
input_shape = (3, ) + tuple(args.shape) | ||
h, w = args.shape | ||
else: | ||
raise ValueError('invalid input shape') | ||
input_shape = (3, h, w) | ||
|
||
cfg = Config.fromfile(args.config) | ||
model = build_pose_estimator(cfg.model) | ||
model.eval() | ||
|
||
if hasattr(model, 'extract_feat'): | ||
model.forward = model.extract_feat | ||
else: | ||
raise NotImplementedError( | ||
'FLOPs counter is currently not currently supported with {}'. | ||
format(model.__class__.__name__)) | ||
|
||
inputs = (torch.randn((1, *input_shape)), ) | ||
flops_ = FlopCountAnalysis(model, inputs) | ||
activations_ = ActivationCountAnalysis(model, inputs) | ||
if args.cfg_options is not None: | ||
cfg.merge_from_dict(args.cfg_options) | ||
|
||
flops = _format_size(flops_.total()) | ||
activations = _format_size(activations_.total()) | ||
params = _format_size(parameter_count(model)['']) | ||
model = MODELS.build(cfg.model) | ||
model.eval() | ||
|
||
flop_table = flop_count_table( | ||
flops=flops_, | ||
activations=activations_, | ||
show_param_shapes=True, | ||
) | ||
flop_str = flop_count_str(flops=flops_, activations=activations_) | ||
analysis_results = get_model_complexity_info( | ||
model, input_shape, show_table=True, show_arch=False) | ||
|
||
print('\n' + flop_str) | ||
print('\n' + flop_table) | ||
# ayalysis_results = { | ||
# 'flops': flops, | ||
# 'flops_str': flops_str, | ||
# 'activations': activations, | ||
# 'activations_str': activations_str, | ||
# 'params': params, | ||
# 'params_str': params_str, | ||
# 'out_table': complexity_table, | ||
# 'out_arch': complexity_arch | ||
# } | ||
|
||
split_line = '=' * 30 | ||
print(f'{split_line}\nInput shape: {input_shape}\n' | ||
f'Flops: {flops}\nParams: {params}\n' | ||
f'Activation: {activations}\n{split_line}') | ||
f'Flops: {analysis_results["flops"]}\n' | ||
f'Params: {analysis_results["params"]}\n{split_line}') | ||
|
||
print(analysis_results['activations']) | ||
# print(analysis_results['complexity_table']) | ||
# print(complexity_str) | ||
print('!!!Please be cautious if you use the results in papers. ' | ||
'You may need to check if all ops are supported and verify that the ' | ||
'flops computation is correct.') | ||
|
||
|
||
if __name__ == '__main__': | ||
register_all_modules() | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
import argparse | ||
|
||
import torch | ||
from mmengine.config import DictAction | ||
|
||
from mmpose.apis.inference import init_model | ||
|
||
try: | ||
# from mmcv.cnn import get_model_complexity_info | ||
from mmengine.analysis import get_model_complexity_info | ||
except ImportError: | ||
raise ImportError('Please upgrade mmcv to >0.6.2') | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser(description='Train a recognizer') | ||
parser.add_argument('config', help='train config file path') | ||
parser.add_argument( | ||
'--device', default='cpu', help='Device used for model initialization') | ||
parser.add_argument( | ||
'--cfg-options', | ||
nargs='+', | ||
action=DictAction, | ||
default={}, | ||
help='override some settings in the used config, the key-value pair ' | ||
'in xxx=yyy format will be merged into config file. For example, ' | ||
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'") | ||
parser.add_argument( | ||
'--shape', | ||
type=int, | ||
nargs='+', | ||
default=[256, 192], | ||
help='input image size') | ||
parser.add_argument( | ||
'--input-constructor', | ||
'-c', | ||
type=str, | ||
choices=['none', 'batch'], | ||
default='none', | ||
help='If specified, it takes a callable method that generates ' | ||
'input. Otherwise, it will generate a random tensor with ' | ||
'input shape to calculate FLOPs.') | ||
parser.add_argument( | ||
'--batch-size', '-b', type=int, default=1, help='input batch size') | ||
parser.add_argument( | ||
'--not-print-per-layer-stat', | ||
'-n', | ||
action='store_true', | ||
help='Whether to print complexity information' | ||
'for each layer in a model') | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def batch_constructor(flops_model, batch_size, input_shape): | ||
"""Generate a batch of tensors to the model.""" | ||
batch = {} | ||
|
||
inputs = torch.ones(()).new_empty( | ||
(batch_size, *input_shape), | ||
dtype=next(flops_model.parameters()).dtype, | ||
device=next(flops_model.parameters()).device) | ||
|
||
batch['inputs'] = inputs | ||
return batch | ||
|
||
|
||
def main(): | ||
|
||
args = parse_args() | ||
|
||
if len(args.shape) == 1: | ||
input_shape = (3, args.shape[0], args.shape[0]) | ||
elif len(args.shape) == 2: | ||
input_shape = (3, ) + tuple(args.shape) | ||
else: | ||
raise ValueError('invalid input shape') | ||
|
||
model = init_model( | ||
args.config, | ||
checkpoint=None, | ||
device=args.device, | ||
cfg_options=args.cfg_options) | ||
|
||
if hasattr(model, '_forward'): | ||
model.forward = model._forward | ||
else: | ||
raise NotImplementedError( | ||
'FLOPs counter is currently not currently supported with {}'. | ||
format(model.__class__.__name__)) | ||
|
||
analysis_results = get_model_complexity_info(model, input_shape) | ||
flops = analysis_results['flops_str'] | ||
params = analysis_results['params_str'] | ||
split_line = '=' * 30 | ||
input_shape = (args.batch_size, ) + input_shape | ||
print(f'{split_line}\nInput shape: {input_shape}\n' | ||
f'Flops: {flops}\nParams: {params}\n{split_line}') | ||
print('!!!Please be cautious if you use the results in papers. ' | ||
'You may need to check if all ops are supported and verify that the ' | ||
'flops computation is correct.') | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |