Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix]: add convert script for Votenet #163

Merged
merged 4 commits into from
Oct 21, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion configs/_base_/models/votenet.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,8 @@
mlp_channels=[256, 128, 128, 128],
use_xyz=True,
normalize_xyz=True),
pred_layer_cfg=dict(in_channels=128, shared_conv_channels=(128, 128)),
pred_layer_cfg=dict(
in_channels=128, shared_conv_channels=(128, 128), bias=True),
conv_cfg=dict(type='Conv1d'),
norm_cfg=dict(type='BN1d'),
objectness_loss=dict(
Expand Down
148 changes: 148 additions & 0 deletions tools/convert_votenet_checkpoints.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,148 @@
import argparse
encore-zhou marked this conversation as resolved.
Show resolved Hide resolved
import tempfile
import torch
from mmcv import Config
from mmcv.runner import load_state_dict

from mmdet3d.models import build_detector


def parse_args():
parser = argparse.ArgumentParser(
description='MMDet3D upgrade model version(before v0.6.0) of VoteNet')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('--out', help='path of the output checkpoint file')
args = parser.parse_args()
return args


def parse_config(config_strings):
"""Parse config from strings.

Args:
config_strings (string): strings of model config.

Returns:
Config: model config
"""
temp_file = tempfile.NamedTemporaryFile()
config_path = f'{temp_file.name}.py'
with open(config_path, 'w') as f:
f.write(config_strings)

config = Config.fromfile(config_path)

# Update backbone config
if 'pool_mod' in config.model.backbone:
config.model.backbone.pop('pool_mod')

if 'sa_cfg' not in config.model.backbone:
config.model.backbone['sa_cfg'] = dict(
type='PointSAModule',
pool_mod='max',
use_xyz=True,
normalize_xyz=True)

if 'type' not in config.model.bbox_head.vote_aggregation_cfg:
config.model.bbox_head.vote_aggregation_cfg['type'] = 'PointSAModule'

# Update bbox_head config
if 'pred_layer_cfg' not in config.model.bbox_head:
config.model.bbox_head['pred_layer_cfg'] = dict(
in_channels=128, shared_conv_channels=(128, 128), bias=True)

if 'feat_channels' in config.model.bbox_head:
config.model.bbox_head.pop('feat_channels')

if 'vote_moudule_cfg' in config.model.bbox_head:
config.model.bbox_head['vote_module_cfg'] = config.model.bbox_head.pop(
'vote_moudule_cfg')

if config.model.bbox_head.vote_aggregation_cfg.use_xyz:
config.model.bbox_head.vote_aggregation_cfg.mlp_channels[0] -= 3

temp_file.close()

return config


def main():
"""Convert keys in checkpoints for VoteNet.

There can be some breaking changes during the development of mmdetection3d,
and this tool is used for upgrading checkpoints trained with old versions
(before v0.6.0) to the latest one.
"""
args = parse_args()
checkpoint = torch.load(args.checkpoint)
cfg = parse_config(checkpoint['meta']['config'])
# Build the model and load checkpoint
model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
orig_ckpt = checkpoint['state_dict']
converted_ckpt = orig_ckpt.copy()

if cfg['dataset_type'] == 'ScanNetDataset':
NUM_CLASSES = 18
elif cfg['dataset_type'] == 'SUNRGBDDataset':
NUM_CLASSES = 10
else:
raise NotImplementedError

RENAME_PREFIX = {
'bbox_head.conv_pred.0': 'bbox_head.conv_pred.shared_convs.layer0',
'bbox_head.conv_pred.1': 'bbox_head.conv_pred.shared_convs.layer1'
}

DEL_KEYS = [
'bbox_head.conv_pred.0.bn.num_batches_tracked',
'bbox_head.conv_pred.1.bn.num_batches_tracked'
]

EXTRACT_KEYS = {
'bbox_head.conv_pred.conv_cls.weight':
('bbox_head.conv_pred.conv_out.weight', [(0, 2), (-NUM_CLASSES, -1)]),
'bbox_head.conv_pred.conv_cls.bias':
('bbox_head.conv_pred.conv_out.bias', [(0, 2), (-NUM_CLASSES, -1)]),
'bbox_head.conv_pred.conv_reg.weight':
('bbox_head.conv_pred.conv_out.weight', [(2, -NUM_CLASSES)]),
'bbox_head.conv_pred.conv_reg.bias':
('bbox_head.conv_pred.conv_out.bias', [(2, -NUM_CLASSES)])
}

# Delete some useless keys
for key in DEL_KEYS:
converted_ckpt.pop(key)

# Rename keys with specific prefix
RENAME_KEYS = dict()
for old_key in converted_ckpt.keys():
for rename_prefix in RENAME_PREFIX.keys():
if rename_prefix in old_key:
new_key = old_key.replace(rename_prefix,
RENAME_PREFIX[rename_prefix])
RENAME_KEYS[new_key] = old_key
for new_key, old_key in RENAME_KEYS.items():
converted_ckpt[new_key] = converted_ckpt.pop(old_key)

# Extract weights and rename the keys
for new_key, (old_key, indices) in EXTRACT_KEYS.items():
cur_layers = orig_ckpt[old_key]
converted_layers = []
for (start, end) in indices:
if end != -1:
converted_layers.append(cur_layers[start:end])
else:
converted_layers.append(cur_layers[start:])
converted_layers = torch.cat(converted_layers, 0)
converted_ckpt[new_key] = converted_layers
if old_key in converted_ckpt.keys():
converted_ckpt.pop(old_key)

# Check the converted checkpoint by loading to the model
load_state_dict(model, converted_ckpt, strict=True)
checkpoint['state_dict'] = converted_ckpt
torch.save(checkpoint, args.out)


if __name__ == '__main__':
main()