Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

error in ''/mmdet3d/core/bbox/structures/lidar_box3d.py" #220

Closed
liyang0522 opened this issue Dec 8, 2020 · 5 comments
Closed

error in ''/mmdet3d/core/bbox/structures/lidar_box3d.py" #220

liyang0522 opened this issue Dec 8, 2020 · 5 comments
Assignees

Comments

@liyang0522
Copy link

liyang0522 commented Dec 8, 2020

i have run the 3DSSD code , but error occured like this, i dont know the reason , can anyone help?

image

@liyang0522
Copy link
Author

liyang0522 commented Dec 9, 2020

my 3DSSD config like this, i dont konw why the asseritonerror occured, thank you for helping me! @ZwwWayne @yinchimaoliang @encore-zhou

dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Car']
point_cloud_range = [0, -40, -5, 70, 40, 3]
input_modality = dict(use_lidar=True, use_camera=True)
img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
file_client_args = dict(backend='disk')
train_pipeline = [
dict(
type='LoadPointsFromFile',coord_type='LIDAR',load_dim=4,use_dim=4,
file_client_args=file_client_args),
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations3D',with_bbox_3d=True,with_label_3d=True,
file_client_args=file_client_args),
dict(
type='Resize',
img_scale=[(640, 192), (2560, 768)],
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05],
translation_std=[0.2, 0.2, 0.2]),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='BackgroundPointsFilter', bbox_enlarge_range=(0.5, 2.0, 0.5)),
dict(type='IndoorPointSample', num_points=16384),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'img', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
file_client_args=file_client_args),
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1280, 384),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(type='Resize', multiscale_mode='value', keep_ratio=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='IndoorPointSample', num_points=16384),
dict(
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points','img'])
])
]

data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
type='RepeatDataset',
times=2,
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'kitti_infos_train.pkl',
split='training',
pts_prefix='velodyne_reduced',
pipeline=train_pipeline,
modality=input_modality,
classes=class_names,
test_mode=False,
box_type_3d='LiDAR')),
val=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'kitti_infos_val.pkl',
split='training',
pts_prefix='velodyne_reduced',
pipeline=test_pipeline,
modality=input_modality,
classes=class_names,
test_mode=True,
box_type_3d='LiDAR'),
test=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'kitti_infos_test.pkl',
split='testing',
pts_prefix='velodyne_reduced',
pipeline=test_pipeline,
modality=input_modality,
classes=class_names,
test_mode=True,
box_type_3d='LiDAR'))

evaluation = dict(interval=2)

@ZwwWayne
Copy link
Collaborator

It seems that the boxes are empty in your case. You might need to check your code and implementation.

@encore-zhou
Copy link
Contributor

Hi, could you tell me where you modify the config file? @liyang0522

@liyang0522
Copy link
Author

liyang0522 commented Dec 22, 2020

@encore-zhou Sorry for the late reply. In 3DSSD, the only input is lidar point cloud , i try to input the image information and remove gt aug ,so i changed the config file like this:

base = [
'../base/models/3dssd.py', '../base/datasets/kitti-3d-car.py',
'../base/default_runtime.py'
]

model = dict(
type='SSD3DNet2',
backbone=dict(
type='PointNet2SAMSG',
LI_FUSION_cfg=dict(
ENABLED=True,
IMG_FEATURES_CHANNEL=128,
ADD_Image_Attention=True,
IMG_CHANNELS=(3, 64, 128, 256),
POINT_CHANNELS=[128, 384, 768],
DeConv_Reduce=[16, 16, 16],
DeConv_Kernels=[2, 4, 8],
DeConv_Strides=[2, 4, 8]

)),
bbox_head=dict(
num_classes=1,
bbox_coder=dict(
type='AnchorFreeBBoxCoder', num_dir_bins=12, with_rot=True)
)
)

dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Car']
point_cloud_range = [0, -40, -5, 70, 40, 3]

input_modality = dict(use_lidar=True, use_camera=True)
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)

file_client_args = dict(backend='disk')

train_pipeline = [
dict(
type='LoadPointsFromFile',coord_type='LIDAR',load_dim=4,use_dim=4,
file_client_args=file_client_args),
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations3D',with_bbox_3d=True,with_label_3d=True,
file_client_args=file_client_args),
dict(
type='Resize',
img_scale=[(640, 192), (2560, 768)],
multiscale_mode='range',
keep_ratio=True),

dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.9, 1.1],
translation_std=[0.2, 0.2, 0.2]),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(
type='ObjectNoise',
num_try=100,
translation_std=[1.0, 1.0, 0],
global_rot_range=[0.0, 0.0],
rot_range=[-1.0471975511965976, 1.0471975511965976]),

dict(type='BackgroundPointsFilter', bbox_enlarge_range=(0.5, 2.0, 0.5)),
dict(type='IndoorPointSample', num_points=16384),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'img', 'gt_bboxes_3d', 'gt_labels_3d'])
]

test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
file_client_args=file_client_args),
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1280, 384),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(type='Resize', multiscale_mode='value', keep_ratio=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='IndoorPointSample', num_points=16384),
dict(
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points','img'])
])
]

data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
type='RepeatDataset',
times=2,
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'kitti_infos_train.pkl',
split='training',
pts_prefix='velodyne_reduced',
pipeline=train_pipeline,
modality=input_modality,
classes=class_names,
test_mode=False)),
val=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'kitti_infos_val.pkl',
split='training',
pts_prefix='velodyne_reduced',
pipeline=test_pipeline,
modality=input_modality,
classes=class_names,
test_mode=True),
test=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'kitti_infos_test.pkl',
split='testing',
pts_prefix='velodyne_reduced',
pipeline=test_pipeline,
modality=input_modality,
classes=class_names,
test_mode=True))

evaluation = dict(interval=2)

lr = 0.002 # max learning rate
optimizer = dict(type='AdamW', lr=lr, weight_decay=0)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
lr_config = dict(policy='step', warmup=None, step=[80, 120])

total_epochs = 150

log_config = dict(
interval=30,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')
])

@encore-zhou
Copy link
Contributor

Fixed in #258

tpoisonooo pushed a commit to tpoisonooo/mmdetection3d that referenced this issue Sep 5, 2022
* [WIP] Refactor v2.0 (open-mmlab#163)

* Refactor backend wrapper

* Refactor mmdet.inference

* Fix

* merge

* refactor utils

* Use deployer and deploy_model to manage pipeline

* Resolve comments

* Add a real inference api function

* rename wrappers

* Set execute to private method

* Rename deployer deploy_model

* Refactor task

* remove type hint

* lint

* Resolve comments

* resolve comments

* lint

* docstring

* [Fix]: Fix bugs in details in refactor branch (open-mmlab#192)

* [WIP] Refactor v2.0 (open-mmlab#163)

* Refactor backend wrapper

* Refactor mmdet.inference

* Fix

* merge

* refactor utils

* Use deployer and deploy_model to manage pipeline

* Resolve comments

* Add a real inference api function

* rename wrappers

* Set execute to private method

* Rename deployer deploy_model

* Refactor task

* remove type hint

* lint

* Resolve comments

* resolve comments

* lint

* docstring

* Fix errors

* lint

* resolve comments

* fix bugs

* conflict

* lint and typo

* Resolve comment

* refactor mmseg (open-mmlab#201)

* support mmseg

* fix docstring

* fix docstring

* [Refactor]: Get the count of backend files (open-mmlab#202)

* Fix backend files

* resolve comments

* lint

* Fix ncnn

* [Refactor]: Refactor folders of mmdet (open-mmlab#200)

* Move folders

* lint

* test object detection model

* lint

* reset changes

* fix openvino

* resolve comments

* __init__.py

* Fix path

* [Refactor]: move mmseg (open-mmlab#206)

* [Refactor]: Refactor mmedit (open-mmlab#205)

* feature mmedit

* edit2.0

* edit

* refactor mmedit

* fix __init__.py

* fix __init__

* fix formai

* fix comment

* fix comment

* Fix wrong func_name of ConvFCBBoxHead (open-mmlab#209)

* [Refactor]: Refactor mmdet unit test (open-mmlab#207)

* Move folders

* lint

* test object detection model

* lint

* WIP

* remove print

* finish unit test

* Fix tests

* resolve comments

* Add mask test

* lint

* resolve comments

* Refine cfg file

* Move files

* add files

* Fix path

* [Unittest]: Refine the unit tests in mmdet open-mmlab#214

* [Refactor] refactor mmocr to mmdeploy/codebase (open-mmlab#213)

* refactor mmocr to mmdeploy/codebase

* fix docstring of show_result

* fix docstring of visualize

* refine docstring

* replace print with logging

* refince codes

* resolve comments

* resolve comments

* [Refactor]: mmseg  tests (open-mmlab#210)

* refactor mmseg tests

* rename test_codebase

* update

* add model.py

* fix

* [Refactor] Refactor mmcls and the package (open-mmlab#217)

* refactor mmcls

* fix yapf

* fix isort

* refactor-mmcls-package

* fix print to logging

* fix docstrings according to others comments

* fix comments

* fix comments

* fix allentdans comment in pr215

* remove mmocr init

* [Refactor] Refactor mmedit tests (open-mmlab#212)

* feature mmedit

* edit2.0

* edit

* refactor mmedit

* fix __init__.py

* fix __init__

* fix formai

* fix comment

* fix comment

* buff

* edit test and code refactor

* refactor dir

* refactor tests/mmedit

* fix docstring

* add test coverage

* fix lint

* fix comment

* fix comment

* Update typehint (open-mmlab#216)

* update type hint

* update docstring

* update

* remove file

* fix ppl

* Refine get_predefined_partition_cfg

* fix tensorrt version > 8

* move parse_cuda_device_id to device.py

* Fix cascade

* onnx2ncnn docstring

Co-authored-by: Yifan Zhou <[email protected]>
Co-authored-by: RunningLeon <[email protected]>
Co-authored-by: VVsssssk <[email protected]>
Co-authored-by: AllentDan <[email protected]>
Co-authored-by: hanrui1sensetime <[email protected]>
tpoisonooo pushed a commit to tpoisonooo/mmdetection3d that referenced this issue Sep 5, 2022
* Torchscript support (open-mmlab#159)

* support torchscript

* add nms

* add torchscript configs and update deploy process and dump-info

* typescript -> torchscript

* add torchscript custom extension support

* add ts custom ops again

* support mmseg unet

* [WIP] add optimizer for torchscript (open-mmlab#119)

* add passes

* add python api

* Torchscript optimizer python api (open-mmlab#121)

* add passes

* add python api

* use python api instead of executable

* Merge Master, update optimizer (open-mmlab#151)

* [Feature] add yolox ncnn (open-mmlab#29)

* add yolox ncnn

* add ncnn android performance of yolox

* add ut

* fix lint

* fix None bugs for ncnn

* test codecov

* test codecov

* add device

* fix yapf

* remove if-else for img shape

* use channelshuffle optimize

* change benchmark after channelshuffle

* fix yapf

* fix yapf

* fuse continuous reshape

* fix static shape deploy

* fix code

* drop pad

* only static shape

* fix static

* fix docstring

* Added mask overlay to output image, changed fprintf info messages to … (open-mmlab#55)

* Added mask overlay to output image, changed fprintf info messages to stdout

* Improved box filtering (filter area/score), make sure roi coordinates stay within bounds

* clang-format

* Support UNet in mmseg (open-mmlab#77)

* Repeatdataset in train has no CLASSES & PALETTE

* update result for unet

* update docstring for mmdet

* remove ppl for unet in docs

* fix ort wrap about input type (open-mmlab#81)

* Fix memleak (open-mmlab#86)

* delete []

* fix build error when enble MMDEPLOY_ACTIVE_LEVEL

* fix lint

* [Doc] Nano benchmark and tutorial (open-mmlab#71)

* add cls benchmark

* add nano zh-cn benchmark and en tutorial

* add device row

* add doc path to index.rst

* fix typo

* [Fix] fix missing deploy_core (open-mmlab#80)

* fix missing deploy_core

* mv flag to demo

* target link

* [Docs] Fix links in Chinese doc (open-mmlab#84)

* Fix docs in Chinese link

* Fix links

* Delete symbolic link and add links to html

* delete files

* Fix link

* [Feature] Add docker files (open-mmlab#67)

* add gpu and cpu dockerfile

* fix lint

* fix cpu docker and remove redundant

* use pip instead

* add build arg and readme

* fix grammar

* update readme

* add chinese doc for dockerfile and add docker build to build.md

* grammar

* refine dockerfiles

* add FAQs

* update Dpplcv_DIR for SDK building

* remove mmcls

* add sdk demos

* fix typo and lint

* update FAQs

* [Fix]fix check_env (open-mmlab#101)

* fix check_env

* update

* Replace convert_syncbatchnorm in mmseg (open-mmlab#93)

* replace convert_syncbatchnorm with revert_sync_batchnorm from mmcv

* change logger

* [Doc] Update FAQ for TensorRT (open-mmlab#96)

* update FAQ

* comment

* [Docs]: Update doc for openvino installation (open-mmlab#102)

* fix docs

* fix docs

* fix docs

* fix mmcv version

* fix docs

* rm blank line

* simplify non batch nms (open-mmlab#99)

* [Enhacement] Allow test.py to save evaluation results (open-mmlab#108)

* Add log file

* Delete debug code

* Rename logger

* resolve comments

* [Enhancement] Support mmocr v0.4+ (open-mmlab#115)

* support mmocr v0.4+

* 0.4.0 -> 0.4.1

* fix onnxruntime wrapper for gpu inference (open-mmlab#123)

* fix ncnn wrapper for ort-gpu

* resolve comment

* fix lint

* Fix typo (open-mmlab#132)

* lock mmcls version (open-mmlab#131)

* [Enhancement] upgrade isort in pre-commit config (open-mmlab#141)

* [Enhancement] upgrade isort in pre-commit config by refering to mmflow pr open-mmlab#87

* fix lint

* remove .isort.cfg and put its known_third_party to setup.cfg

* Fix ci for mmocr (open-mmlab#144)

* fix mmocr unittests

* remove useless

* lock mmdet maximum version to 2.20

* pip install -U numpy

* Fix capture_output (open-mmlab#125)

Co-authored-by: hanrui1sensetime <[email protected]>
Co-authored-by: Johannes L <[email protected]>
Co-authored-by: RunningLeon <[email protected]>
Co-authored-by: VVsssssk <[email protected]>
Co-authored-by: lvhan028 <[email protected]>
Co-authored-by: AllentDan <[email protected]>
Co-authored-by: Yifan Zhou <[email protected]>
Co-authored-by: 杨培文 (Yang Peiwen) <[email protected]>
Co-authored-by: Semyon Bevzyuk <[email protected]>

* configs for all tasks

* use torchvision roi align

* remote unnecessary code

* fix ut

* fix ut

* export

* det dynamic

* det dynamic

* add ut

* fix ut

* add ut and docs

* fix ut

* skip torchscript ut if no ops available

* add torchscript option to build.md

* update benchmark and resolve comments

* resolve conflicts

* rename configs

* fix mrcnn cuda test

* remove useless

* add version requirements to docs and comments to codes

* enable empty image exporting for torchscript and accelerate ORT inference for MRCNN

* rebase

* update example for torchscript.md

* update FAQs for torchscript.md

* resolve comments

* only use torchvision roi_align for torchscript

* fix ut

* use torchvision roi align when pool model is avg

* resolve comments

Co-authored-by: grimoire <[email protected]>
Co-authored-by: grimoire <[email protected]>
Co-authored-by: hanrui1sensetime <[email protected]>
Co-authored-by: Johannes L <[email protected]>
Co-authored-by: RunningLeon <[email protected]>
Co-authored-by: VVsssssk <[email protected]>
Co-authored-by: lvhan028 <[email protected]>
Co-authored-by: Yifan Zhou <[email protected]>
Co-authored-by: 杨培文 (Yang Peiwen) <[email protected]>
Co-authored-by: Semyon Bevzyuk <[email protected]>

* remove roi_align plugin for ORT (open-mmlab#258)

* remove roi_align plugin

* remove ut

* skip single_roi_extractor UT for ORT in CI

* move align to symbolic and update docs

* recover UT

* resolve comments

* add mmcls example

* add mmcls/mmdet/mmseg and their corresponding tests

* add test data

* simplify test data

* add requirement in optional.txt

* fix setup problem when adding mmrazor requirement

* use get_codebase_config

* change mmrazor requirement

Co-authored-by: AllentDan <[email protected]>
Co-authored-by: grimoire <[email protected]>
Co-authored-by: grimoire <[email protected]>
Co-authored-by: hanrui1sensetime <[email protected]>
Co-authored-by: Johannes L <[email protected]>
Co-authored-by: RunningLeon <[email protected]>
Co-authored-by: VVsssssk <[email protected]>
Co-authored-by: lvhan028 <[email protected]>
Co-authored-by: Yifan Zhou <[email protected]>
Co-authored-by: 杨培文 (Yang Peiwen) <[email protected]>
Co-authored-by: Semyon Bevzyuk <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

3 participants