Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix] Fix use_depthwise in RTMDet. #9624

Merged
merged 1 commit into from
Jan 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 9 additions & 3 deletions mmdet/models/dense_heads/rtmdet_head.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, Scale, is_norm
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule, Scale, is_norm
from mmengine.model import bias_init_with_prob, constant_init, normal_init
from mmengine.structures import InstanceData
from torch import Tensor
Expand Down Expand Up @@ -536,6 +536,8 @@ class RTMDetSepBNHead(RTMDetHead):
in_channels (int): Number of channels in the input feature map.
share_conv (bool): Whether to share conv layers between stages.
Defaults to True.
use_depthwise (bool): Whether to use depthwise separable convolution in
head. Defaults to False.
norm_cfg (:obj:`ConfigDict` or dict)): Config dict for normalization
layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001).
act_cfg (:obj:`ConfigDict` or dict)): Config dict for activation layer.
Expand All @@ -547,6 +549,7 @@ def __init__(self,
num_classes: int,
in_channels: int,
share_conv: bool = True,
use_depthwise: bool = False,
norm_cfg: ConfigType = dict(
type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU'),
Expand All @@ -555,6 +558,7 @@ def __init__(self,
**kwargs) -> None:
self.share_conv = share_conv
self.exp_on_reg = exp_on_reg
self.use_depthwise = use_depthwise
super().__init__(
num_classes,
in_channels,
Expand All @@ -565,6 +569,8 @@ def __init__(self,

def _init_layers(self) -> None:
"""Initialize layers of the head."""
conv = DepthwiseSeparableConvModule \
if self.use_depthwise else ConvModule
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()

Expand All @@ -578,7 +584,7 @@ def _init_layers(self) -> None:
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
cls_convs.append(
ConvModule(
conv(
chn,
self.feat_channels,
3,
Expand All @@ -588,7 +594,7 @@ def _init_layers(self) -> None:
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
reg_convs.append(
ConvModule(
conv(
chn,
self.feat_channels,
3,
Expand Down
4 changes: 3 additions & 1 deletion mmdet/models/necks/cspnext_pafpn.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,7 @@ def __init__(
in_channels[idx - 1],
num_blocks=num_csp_blocks,
add_identity=False,
use_depthwise=use_depthwise,
use_cspnext_block=True,
expand_ratio=expand_ratio,
conv_cfg=conv_cfg,
Expand All @@ -108,6 +109,7 @@ def __init__(
in_channels[idx + 1],
num_blocks=num_csp_blocks,
add_identity=False,
use_depthwise=use_depthwise,
use_cspnext_block=True,
expand_ratio=expand_ratio,
conv_cfg=conv_cfg,
Expand All @@ -117,7 +119,7 @@ def __init__(
self.out_convs = nn.ModuleList()
for i in range(len(in_channels)):
self.out_convs.append(
ConvModule(
conv(
in_channels[i],
out_channels,
3,
Expand Down