Skip to content

Commit

Permalink
Additional inst_seg configs
Browse files Browse the repository at this point in the history
  • Loading branch information
PeterVennerstrom committed Apr 25, 2022
1 parent 30e9eb6 commit 5e653f7
Show file tree
Hide file tree
Showing 5 changed files with 117 additions and 0 deletions.
7 changes: 7 additions & 0 deletions configs/mask2former/mask2former_r101_lsj_8x2_50e_coco_ins.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
_base_ = ['./mask2former_r50_lsj_8x2_50e_coco_ins.py']

model = dict(
backbone=dict(
depth=101,
init_cfg=dict(type='Pretrained',
checkpoint='torchvision://resnet101')))
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
_base_ = ['./mask2former_swin-b-p4-w12-384_lsj_8x2_50e_coco_ins.py']
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth' # noqa

model = dict(
backbone=dict(init_cfg=dict(type='Pretrained', checkpoint=pretrained)))
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
_base_ = ['./mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco_ins.py']
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth' # noqa

depths = [2, 2, 18, 2]
model = dict(
backbone=dict(
pretrain_img_size=384,
embed_dims=128,
depths=depths,
num_heads=[4, 8, 16, 32],
window_size=12,
init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
panoptic_head=dict(in_channels=[128, 256, 512, 1024]))

# set all layers in backbone to lr_mult=0.1
# set all norm layers, position_embeding,
# query_embeding, level_embeding to decay_multi=0.0
backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0)
backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0)
embed_multi = dict(lr_mult=1.0, decay_mult=0.0)
custom_keys = {
'backbone': dict(lr_mult=0.1, decay_mult=1.0),
'backbone.patch_embed.norm': backbone_norm_multi,
'backbone.norm': backbone_norm_multi,
'absolute_pos_embed': backbone_embed_multi,
'relative_position_bias_table': backbone_embed_multi,
'query_embed': embed_multi,
'query_feat': embed_multi,
'level_embed': embed_multi
}
custom_keys.update({
f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi
for stage_id, num_blocks in enumerate(depths)
for block_id in range(num_blocks)
})
custom_keys.update({
f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi
for stage_id in range(len(depths) - 1)
})
# optimizer
optimizer = dict(
paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
_base_ = ['./mask2former_swin-b-p4-w12-384_lsj_8x2_50e_coco_ins.py']
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth' # noqa

model = dict(
backbone=dict(
embed_dims=192,
num_heads=[6, 12, 24, 48],
init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
panoptic_head=dict(num_queries=200, in_channels=[192, 384, 768, 1536]))

data = dict(samples_per_gpu=1, workers_per_gpu=1)

lr_config = dict(step=[655556, 710184])

max_iters = 737500
runner = dict(type='IterBasedRunner', max_iters=max_iters)

# Before 735001th iteration, we do evaluation every 5000 iterations.
# After 735000th iteration, we do evaluation every 737500 iterations,
# which means that we do evaluation at the end of training.'
interval = 5000
dynamic_intervals = [(max_iters // interval * interval + 1, max_iters)]
evaluation = dict(
interval=interval,
dynamic_intervals=dynamic_intervals,
metric=['PQ', 'bbox', 'segm'])
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
_base_ = ['./mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco_ins.py']
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth' # noqa

depths = [2, 2, 18, 2]
model = dict(
backbone=dict(
depths=depths, init_cfg=dict(type='Pretrained',
checkpoint=pretrained)))

# set all layers in backbone to lr_mult=0.1
# set all norm layers, position_embeding,
# query_embeding, level_embeding to decay_multi=0.0
backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0)
backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0)
embed_multi = dict(lr_mult=1.0, decay_mult=0.0)
custom_keys = {
'backbone': dict(lr_mult=0.1, decay_mult=1.0),
'backbone.patch_embed.norm': backbone_norm_multi,
'backbone.norm': backbone_norm_multi,
'absolute_pos_embed': backbone_embed_multi,
'relative_position_bias_table': backbone_embed_multi,
'query_embed': embed_multi,
'query_feat': embed_multi,
'level_embed': embed_multi
}
custom_keys.update({
f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi
for stage_id, num_blocks in enumerate(depths)
for block_id in range(num_blocks)
})
custom_keys.update({
f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi
for stage_id in range(len(depths) - 1)
})
# optimizer
optimizer = dict(
paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))

0 comments on commit 5e653f7

Please sign in to comment.