-
Notifications
You must be signed in to change notification settings - Fork 9.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
30e9eb6
commit 5e653f7
Showing
5 changed files
with
117 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
_base_ = ['./mask2former_r50_lsj_8x2_50e_coco_ins.py'] | ||
|
||
model = dict( | ||
backbone=dict( | ||
depth=101, | ||
init_cfg=dict(type='Pretrained', | ||
checkpoint='torchvision://resnet101'))) |
5 changes: 5 additions & 0 deletions
5
configs/mask2former/mask2former_swin-b-p4-w12-384-in21k_lsj_8x2_50e_coco_ins.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
_base_ = ['./mask2former_swin-b-p4-w12-384_lsj_8x2_50e_coco_ins.py'] | ||
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth' # noqa | ||
|
||
model = dict( | ||
backbone=dict(init_cfg=dict(type='Pretrained', checkpoint=pretrained))) |
42 changes: 42 additions & 0 deletions
42
configs/mask2former/mask2former_swin-b-p4-w12-384_lsj_8x2_50e_coco_ins.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
_base_ = ['./mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco_ins.py'] | ||
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth' # noqa | ||
|
||
depths = [2, 2, 18, 2] | ||
model = dict( | ||
backbone=dict( | ||
pretrain_img_size=384, | ||
embed_dims=128, | ||
depths=depths, | ||
num_heads=[4, 8, 16, 32], | ||
window_size=12, | ||
init_cfg=dict(type='Pretrained', checkpoint=pretrained)), | ||
panoptic_head=dict(in_channels=[128, 256, 512, 1024])) | ||
|
||
# set all layers in backbone to lr_mult=0.1 | ||
# set all norm layers, position_embeding, | ||
# query_embeding, level_embeding to decay_multi=0.0 | ||
backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) | ||
backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) | ||
embed_multi = dict(lr_mult=1.0, decay_mult=0.0) | ||
custom_keys = { | ||
'backbone': dict(lr_mult=0.1, decay_mult=1.0), | ||
'backbone.patch_embed.norm': backbone_norm_multi, | ||
'backbone.norm': backbone_norm_multi, | ||
'absolute_pos_embed': backbone_embed_multi, | ||
'relative_position_bias_table': backbone_embed_multi, | ||
'query_embed': embed_multi, | ||
'query_feat': embed_multi, | ||
'level_embed': embed_multi | ||
} | ||
custom_keys.update({ | ||
f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi | ||
for stage_id, num_blocks in enumerate(depths) | ||
for block_id in range(num_blocks) | ||
}) | ||
custom_keys.update({ | ||
f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi | ||
for stage_id in range(len(depths) - 1) | ||
}) | ||
# optimizer | ||
optimizer = dict( | ||
paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0)) |
26 changes: 26 additions & 0 deletions
26
configs/mask2former/mask2former_swin-l-p4-w12-384-in21k_lsj_16x1_100e_coco_ins.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
_base_ = ['./mask2former_swin-b-p4-w12-384_lsj_8x2_50e_coco_ins.py'] | ||
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth' # noqa | ||
|
||
model = dict( | ||
backbone=dict( | ||
embed_dims=192, | ||
num_heads=[6, 12, 24, 48], | ||
init_cfg=dict(type='Pretrained', checkpoint=pretrained)), | ||
panoptic_head=dict(num_queries=200, in_channels=[192, 384, 768, 1536])) | ||
|
||
data = dict(samples_per_gpu=1, workers_per_gpu=1) | ||
|
||
lr_config = dict(step=[655556, 710184]) | ||
|
||
max_iters = 737500 | ||
runner = dict(type='IterBasedRunner', max_iters=max_iters) | ||
|
||
# Before 735001th iteration, we do evaluation every 5000 iterations. | ||
# After 735000th iteration, we do evaluation every 737500 iterations, | ||
# which means that we do evaluation at the end of training.' | ||
interval = 5000 | ||
dynamic_intervals = [(max_iters // interval * interval + 1, max_iters)] | ||
evaluation = dict( | ||
interval=interval, | ||
dynamic_intervals=dynamic_intervals, | ||
metric=['PQ', 'bbox', 'segm']) |
37 changes: 37 additions & 0 deletions
37
configs/mask2former/mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco_ins.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
_base_ = ['./mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco_ins.py'] | ||
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth' # noqa | ||
|
||
depths = [2, 2, 18, 2] | ||
model = dict( | ||
backbone=dict( | ||
depths=depths, init_cfg=dict(type='Pretrained', | ||
checkpoint=pretrained))) | ||
|
||
# set all layers in backbone to lr_mult=0.1 | ||
# set all norm layers, position_embeding, | ||
# query_embeding, level_embeding to decay_multi=0.0 | ||
backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0) | ||
backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0) | ||
embed_multi = dict(lr_mult=1.0, decay_mult=0.0) | ||
custom_keys = { | ||
'backbone': dict(lr_mult=0.1, decay_mult=1.0), | ||
'backbone.patch_embed.norm': backbone_norm_multi, | ||
'backbone.norm': backbone_norm_multi, | ||
'absolute_pos_embed': backbone_embed_multi, | ||
'relative_position_bias_table': backbone_embed_multi, | ||
'query_embed': embed_multi, | ||
'query_feat': embed_multi, | ||
'level_embed': embed_multi | ||
} | ||
custom_keys.update({ | ||
f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi | ||
for stage_id, num_blocks in enumerate(depths) | ||
for block_id in range(num_blocks) | ||
}) | ||
custom_keys.update({ | ||
f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi | ||
for stage_id in range(len(depths) - 1) | ||
}) | ||
# optimizer | ||
optimizer = dict( | ||
paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0)) |