Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[docs] Fix typo in tutorial #509

Merged
merged 1 commit into from
May 23, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/zh_cn/tutorials/chapter_03_pytorch2onnx.md
Original file line number Diff line number Diff line change
Expand Up @@ -279,7 +279,7 @@ def _interpolate_helper(name, dim, interpolate_mode):
## 总结
在这篇教程中,我们系统地介绍了 PyTorch 转 ONNX 的原理。我们先是着重讲解了使用最频繁的 `torch.onnx.export`函数,又给出了查询 PyTorch 对 ONNX 算子支持情况的方法。通过本文,我们希望大家能够成功转换出大部分不需要添加新算子的 ONNX 模型,并在碰到算子问题时能够有效定位问题原因。具体而言,大家读完本文后应该了解以下的知识:
- 跟踪法和脚本化在导出带控制语句的计算图时有什么区别。
- `torch.onnx.export()`中该如何设置 i`nput_names, output_names, dynamic_axes`
- `torch.onnx.export()`中该如何设置 `input_names, output_names, dynamic_axes`
- 使用 `torch.onnx.is_in_onnx_export()`来使模型在转换到 ONNX 时有不同的行为。
- 如何查询 [ONNX 算子文档](https://github.com/onnx/onnx/blob/main/docs/Operators.md)
- 如何查询 PyTorch 对某个 ONNX 版本的新特性支持情况。
Expand Down