Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix] fix coreml for branch 1.x #1669

Merged
merged 3 commits into from
Jan 31, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 39 additions & 5 deletions mmdeploy/backend/coreml/backend_manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ def is_available(cls, with_custom_ops: bool = False) -> bool:
bool: True if backend package is installed.
"""
import importlib
return importlib.util.find_spec('coreml') is not None
return importlib.util.find_spec('coremltools') is not None

@classmethod
def get_version(cls) -> str:
Expand All @@ -52,7 +52,7 @@ def get_version(cls) -> str:
else:
import pkg_resources
try:
return pkg_resources.get_distribution('coreml').version
return pkg_resources.get_distribution('coremltools').version
except Exception:
return 'None'

Expand All @@ -76,14 +76,48 @@ def to_backend(cls,
Returns:
Sequence[str]: Backend files.
"""
from .torchscript2coreml import from_torchscript
from mmdeploy.utils import (get_common_config, get_ir_config,
get_model_inputs, load_config)
from .torchscript2coreml import from_torchscript, get_model_suffix

coreml_files = []
for model_id, torchscript_path in enumerate(ir_files):
torchscript_name = osp.splitext(osp.split(torchscript_path)[1])[0]
output_file_prefix = osp.join(work_dir, torchscript_name)

from_torchscript(model_id, torchscript_path, output_file_prefix,
deploy_cfg, coreml_files)
deploy_cfg = load_config(deploy_cfg)[0]

common_params = get_common_config(deploy_cfg)
model_params = get_model_inputs(deploy_cfg)[model_id]

final_params = common_params
final_params.update(model_params)

ir_config = get_ir_config(deploy_cfg)
input_names = ir_config.get('input_names', [])
output_names = ir_config.get('output_names', [])
input_shapes = final_params['input_shapes']
compute_precision = final_params.get('compute_precision',
'FLOAT32')
convert_to = deploy_cfg.backend_config.convert_to

minimum_deployment_target = final_params.get(
'minimum_deployment_target', None)
skip_model_load = final_params.get('skip_model_load', False)

from_torchscript(
torchscript_path,
output_file_prefix,
input_names=input_names,
output_names=output_names,
input_shapes=input_shapes,
compute_precision=compute_precision,
convert_to=convert_to,
minimum_deployment_target=minimum_deployment_target,
skip_model_load=skip_model_load)

suffix = get_model_suffix(convert_to)
output_path = output_file_prefix + suffix
coreml_files.append(output_path)

return coreml_files
24 changes: 14 additions & 10 deletions mmdeploy/backend/coreml/torchscript2coreml.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Copyright (c) OpenMMLab. All rights reserved.

from typing import Dict, Sequence, Union
from typing import Dict, Optional, Sequence, Union

import coremltools as ct
import torch
Expand Down Expand Up @@ -52,9 +52,10 @@ def from_torchscript(torchscript_model: Union[str,
output_file_prefix: str,
input_names: Sequence[str],
output_names: Sequence[str],
input_shapes: Dict,
input_shapes: Dict[str, Dict],
compute_precision: str = 'FLOAT32',
convert_to: str = 'neuralnetwork',
fp16_mode: bool = False,
minimum_deployment_target: Optional[str] = None,
grimoire marked this conversation as resolved.
Show resolved Hide resolved
skip_model_load: bool = True,
**kwargs):
"""Create a coreml engine from torchscript.
Expand All @@ -67,9 +68,12 @@ def from_torchscript(torchscript_model: Union[str,
output_names (Sequence[str]): The output names of the model.
input_shapes (Dict): The input shapes include max_shape, min_shape and
default_shape
convert_to (str, optional): The converted model type, can be
compute_precision (str): The model precision,
FLOAT16 or FLOAT32, see coremltools.precision, default `FLOAT32`.
convert_to (str): The converted model type, can be
'neuralnetwork' or 'mlprogram'. Defaults to 'neuralnetwork'.
fp16_mode (bool, optional): Convert to fp16 model. Defaults to False.
minimum_deployment_target (str, optional): minimum deploy target.
iOS15, iOS16, etc., see coremltools.target
skip_model_load (bool, optional): Skip model load. Defaults to True.
"""

Expand Down Expand Up @@ -98,19 +102,19 @@ def from_torchscript(torchscript_model: Union[str,
if convert_to == 'neuralnetwork':
compute_precision = None
else:
if fp16_mode:
compute_precision = ct.precision.FLOAT16
else:
compute_precision = ct.precision.FLOAT32
compute_precision = ct.precision[compute_precision]

mlmodel = ct.convert(
model=torchscript_model,
inputs=inputs,
outputs=outputs,
compute_precision=compute_precision,
convert_to=convert_to,
skip_model_load=False)
minimum_deployment_target=ct.target[minimum_deployment_target]
if minimum_deployment_target else None,
skip_model_load=skip_model_load)

suffix = get_model_suffix(convert_to)
output_path = output_file_prefix + suffix

mlmodel.save(output_path)
24 changes: 24 additions & 0 deletions mmdeploy/pytorch/functions/topk.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,3 +68,27 @@ def topk__tensorrt(input: torch.Tensor,
k = TENSORRT_MAX_TOPK

return ctx.origin_func(input, k, dim=dim, largest=largest, sorted=sorted)


@FUNCTION_REWRITER.register_rewriter(func_name='torch.topk', backend='coreml')
@FUNCTION_REWRITER.register_rewriter(
func_name='torch.Tensor.topk', backend='coreml')
def topk__coreml(input: torch.Tensor,
k: int,
dim: Optional[int] = None,
largest: bool = True,
sorted: bool = True):
"""Rewrite `topk` for coreml.

Cast k to tensor and make sure k is smaller than input.shape[dim].
"""
ctx = FUNCTION_REWRITER.get_context()

if dim is None:
dim = int(input.ndim - 1)
size = input.shape[dim]
if not isinstance(k, torch.Tensor):
k = torch.tensor(k, device=input.device, dtype=torch.long)
# Always keep topk op for dynamic input
k = torch.where(k < size, k, size)
return ctx.origin_func(input, k, dim=dim, largest=largest, sorted=sorted)
34 changes: 29 additions & 5 deletions tests/test_backend/test_wrapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ def generate_torchscript_file():
context_info=context_info)


def onnx2backend(backend, onnx_file):
def ir2backend(backend, onnx_file, ts_file):
if backend == Backend.TENSORRT:
from mmdeploy.backend.tensorrt import from_onnx
backend_file = tempfile.NamedTemporaryFile(suffix='.engine').name
Expand Down Expand Up @@ -142,6 +142,33 @@ def onnx2backend(backend, onnx_file):
onnx_file, lib_file, shape=shape, dtype=dtype, tuner=tuner_dict)
assert osp.exists(lib_file)
return lib_file
elif backend == Backend.TORCHSCRIPT:
return ts_file
elif backend == Backend.COREML:
output_names = ['output']
from mmdeploy.backend.coreml.torchscript2coreml import (
from_torchscript, get_model_suffix)
backend_dir = tempfile.TemporaryDirectory().name
work_dir = backend_dir
torchscript_name = osp.splitext(osp.split(ts_file)[1])[0]
output_file_prefix = osp.join(work_dir, torchscript_name)
convert_to = 'mlprogram'
from_torchscript(
ts_file,
output_file_prefix,
input_names=input_names,
output_names=output_names,
input_shapes=dict(
input=dict(
min_shape=[1, 3, 8, 8],
default_shape=[1, 3, 8, 8],
max_shape=[1, 3, 8, 8])),
convert_to=convert_to)
suffix = get_model_suffix(convert_to)
return output_file_prefix + suffix
else:
raise NotImplementedError(
f'Convert for {backend.value} has not been implemented.')


def create_wrapper(backend, model_files):
Expand Down Expand Up @@ -184,10 +211,7 @@ def run_wrapper(backend, wrapper, input):
@pytest.mark.parametrize('backend', ALL_BACKEND)
def test_wrapper(backend):
check_backend(backend, True)
if backend == Backend.TORCHSCRIPT:
model_files = ts_file
else:
model_files = onnx2backend(backend, onnx_file)
model_files = ir2backend(backend, onnx_file, ts_file)
assert model_files is not None
wrapper = create_wrapper(backend, model_files)
assert wrapper is not None
Expand Down