Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add YOLOv5 support for RV1126 device. #1321

Merged
merged 25 commits into from
Dec 16, 2022
Merged
Show file tree
Hide file tree
Changes from 24 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions configs/_base_/backends/rknn.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
backend_config = dict(
type='rknn',
common_config=dict(
mean_values=None, # [[103.53, 116.28, 123.675]],
std_values=None, # [[57.375, 57.12, 58.395]],
target_platform='rv1126', # 'rk3588'
optimization_level=1),
quantization_config=dict(do_quantization=False, dataset=None))
quantization_config=dict(
do_quantization=True,
dataset=None,
pre_compile=False,
rknn_batch_size=-1))
lvhan028 marked this conversation as resolved.
Show resolved Hide resolved
7 changes: 7 additions & 0 deletions configs/mmcls/classification_rknn-fp16_static-224x224.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
_base_ = ['./classification_static.py', '../_base_/backends/rknn.py']

onnx_config = dict(input_shape=[224, 224])
codebase_config = dict(model_type='end2end')
backend_config = dict(
input_size_list=[[3, 224, 224]],
quantization_config=dict(do_quantization=False))
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
_base_ = ['./classification_static.py', '../_base_/backends/rknn.py']

onnx_config = dict(input_shape=[224, 224])
codebase_config = dict(model_type='rknn')
codebase_config = dict(model_type='end2end')
backend_config = dict(input_size_list=[[3, 224, 224]])
34 changes: 34 additions & 0 deletions configs/mmdet/detection/detection_rknn-fp16_static-320x320.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
_base_ = ['../_base_/base_static.py', '../../_base_/backends/rknn.py']

onnx_config = dict(input_shape=[320, 320])

codebase_config = dict(model_type='rknn')

backend_config = dict(
input_size_list=[[3, 320, 320]],
quantization_config=dict(do_quantization=False))

# # yolov3, yolox for rknn-toolkit and rknn-toolkit2
# partition_config = dict(
# type='rknn', # the partition policy name
# apply_marks=True, # should always be set to True
# partition_cfg=[
# dict(
# save_file='model.onnx', # name to save the partitioned onnx
# start=['detector_forward:input'], # [mark_name:input, ...]
# end=['yolo_head:input'], # [mark_name:output, ...]
# output_names=[f'pred_maps.{i}' for i in range(3)]) # out names
# ])

# # retinanet, ssd, fsaf for rknn-toolkit2
# partition_config = dict(
# type='rknn', # the partition policy name
# apply_marks=True,
# partition_cfg=[
# dict(
# save_file='model.onnx',
# start='detector_forward:input',
# end=['BaseDenseHead:output'],
# output_names=[f'BaseDenseHead.cls.{i}' for i in range(5)] +
# [f'BaseDenseHead.loc.{i}' for i in range(5)])
# ])
Original file line number Diff line number Diff line change
Expand Up @@ -6,24 +6,27 @@

backend_config = dict(input_size_list=[[3, 320, 320]])

# yolov3, yolox
# # yolov3, yolox for rknn-toolkit and rknn-toolkit2
# partition_config = dict(
# type='rknn', # the partition policy name
# apply_marks=True, # should always be set to True
# partition_cfg=[
# dict(
# save_file='model.onnx', # name to save the partitioned onnx
# start=['detector_forward:input'], # [mark_name:input, ...]
# end=['yolo_head:input']) # [mark_name:output, ...]
# end=['yolo_head:input'], # [mark_name:output, ...]
# output_names=[f'pred_maps.{i}' for i in range(3)]) # out names
# ])

# # retinanet, ssd, fsaf
# # retinanet, ssd, fsaf for rknn-toolkit2
# partition_config = dict(
# type='rknn', # the partition policy name
# apply_marks=True,
# partition_cfg=[
# dict(
# save_file='model.onnx',
# start='detector_forward:input',
# end=['BaseDenseHead:output'])
# end=['BaseDenseHead:output'],
# output_names=[f'BaseDenseHead.cls.{i}' for i in range(5)] +
# [f'BaseDenseHead.loc.{i}' for i in range(5)])
# ])
Original file line number Diff line number Diff line change
Expand Up @@ -8,5 +8,6 @@
dict(
save_file='yolov3.onnx',
start=['detector_forward:input'],
end=['yolo_head:input'])
end=['yolo_head:input'],
output_names=[f'pred_maps.{i}' for i in range(3)])
])
10 changes: 10 additions & 0 deletions configs/mmpose/pose-detection_rknn-fp16_static-256x192.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
_base_ = ['./pose-detection_static.py', '../_base_/backends/rknn.py']

onnx_config = dict(input_shape=[192, 256])

codebase_config = dict(model_type='end2end')

backend_config = dict(
input_size_list=[[3, 256, 192]],
quantization_config=dict(do_quantization=False),
common_config=dict(target_platform='rv1126'))
10 changes: 10 additions & 0 deletions configs/mmpose/pose-detection_rknn-fp16_static-256x256.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
_base_ = ['./pose-detection_static.py', '../_base_/backends/rknn.py']

onnx_config = dict(input_shape=[256, 256])

codebase_config = dict(model_type='end2end')

backend_config = dict(
input_size_list=[[3, 256, 256]],
quantization_config=dict(do_quantization=False),
common_config=dict(target_platform='rv1126'))
9 changes: 9 additions & 0 deletions configs/mmpose/pose-detection_rknn-int8_static-256x192.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
_base_ = ['./pose-detection_static.py', '../_base_/backends/rknn.py']

onnx_config = dict(input_shape=[192, 256])

codebase_config = dict(model_type='end2end')

backend_config = dict(
input_size_list=[[3, 256, 192]],
common_config=dict(target_platform='rv1126'))
9 changes: 9 additions & 0 deletions configs/mmpose/pose-detection_rknn-int8_static-256x256.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
_base_ = ['./pose-detection_static.py', '../_base_/backends/rknn.py']

onnx_config = dict(input_shape=[256, 256])

codebase_config = dict(model_type='end2end')

backend_config = dict(
input_size_list=[[3, 256, 256]],
common_config=dict(target_platform='rv1126'))
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
_base_ = ['./pose-detection_static.py', '../_base_/backends/rknn.py']

onnx_config = dict(input_shape=[192, 256], output_names=['simcc_x', 'simcc_y'])

backend_config = dict(
input_size_list=[[3, 256, 192]],
quantization_config=dict(do_quantization=False))
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
_base_ = ['./pose-detection_static.py', '../_base_/backends/rknn.py']

onnx_config = dict(input_shape=[192, 256], output_names=['simcc_x', 'simcc_y'])

backend_config = dict(input_size_list=[[3, 256, 192]])
9 changes: 9 additions & 0 deletions configs/mmseg/segmentation_rknn-fp16_static-320x320.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
_base_ = ['./segmentation_static.py', '../_base_/backends/rknn.py']

onnx_config = dict(input_shape=[320, 320])

codebase_config = dict(model_type='rknn')

backend_config = dict(
input_size_list=[[3, 320, 320]],
quantization_config=dict(do_quantization=False))
3 changes: 2 additions & 1 deletion csrc/mmdeploy/codebase/mmdet/base_dense_head.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,8 @@ Result<Detections> BaseDenseHead::GetBBoxes(const Value& prep_res, const Tensor&

MMDEPLOY_DEBUG("{}-th box: ({}, {}, {}, {}), {}, {}", i, x1, y1, x2, y2, label_id, score);

auto rect = MapToOriginImage(x1, y1, x2, y2, scale_factor.data(), 0, 0, ori_width, ori_height);
auto rect =
MapToOriginImage(x1, y1, x2, y2, scale_factor.data(), 0, 0, ori_width, ori_height, 0, 0);
if (rect[2] - rect[0] < min_bbox_size_ || rect[3] - rect[1] < min_bbox_size_) {
MMDEPLOY_DEBUG("ignore small bbox with width '{}' and height '{}", rect[2] - rect[0],
rect[3] - rect[1]);
Expand Down
19 changes: 9 additions & 10 deletions csrc/mmdeploy/codebase/mmdet/object_detection.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
#include "mmdeploy/core/utils/device_utils.h"
#include "mmdeploy/core/utils/formatter.h"
#include "mmdeploy/experimental/module_adapter.h"
#include "utils.h"

using namespace std;

Expand Down Expand Up @@ -127,6 +128,13 @@ Result<Detections> ResizeBBox::GetBBoxes(const Value& prep_res, const Tensor& de
scale_factor = {1.f, 1.f, 1.f, 1.f};
}

int top_padding = 0;
int left_padding = 0;
if (prep_res.contains("pad_param")) {
top_padding = prep_res["pad_param"][0].get<int>();
left_padding = prep_res["pad_param"][1].get<int>();
}

float w_offset = 0.f;
float h_offset = 0.f;
if (prep_res.contains("border")) {
Expand All @@ -153,7 +161,7 @@ Result<Detections> ResizeBBox::GetBBoxes(const Value& prep_res, const Tensor& de
MMDEPLOY_DEBUG("ori left {}, top {}, right {}, bottom {}, label {}", left, top, right, bottom,
*labels_ptr);
auto rect = MapToOriginImage(left, top, right, bottom, scale_factor.data(), w_offset, h_offset,
ori_width, ori_height);
ori_width, ori_height, top_padding, left_padding);
if (rect[2] - rect[0] < min_bbox_size_ || rect[3] - rect[1] < min_bbox_size_) {
MMDEPLOY_DEBUG("ignore small bbox with width '{}' and height '{}", rect[2] - rect[0],
rect[3] - rect[1]);
Expand All @@ -170,15 +178,6 @@ Result<Detections> ResizeBBox::GetBBoxes(const Value& prep_res, const Tensor& de
}
return objs;
}
std::array<float, 4> ResizeBBox::MapToOriginImage(float left, float top, float right, float bottom,
const float* scale_factor, float x_offset,
float y_offset, int ori_width, int ori_height) {
left = std::max(left / scale_factor[0] + x_offset, 0.f);
top = std::max(top / scale_factor[1] + y_offset, 0.f);
right = std::min(right / scale_factor[2] + x_offset, (float)ori_width - 1.f);
bottom = std::min(bottom / scale_factor[3] + y_offset, (float)ori_height - 1.f);
return {left, top, right, bottom};
}

MMDEPLOY_REGISTER_CODEBASE_COMPONENT(MMDetection, ResizeBBox);

Expand Down
4 changes: 0 additions & 4 deletions csrc/mmdeploy/codebase/mmdet/object_detection.h
Original file line number Diff line number Diff line change
Expand Up @@ -22,10 +22,6 @@ class ResizeBBox : public MMDetection {
template <typename T>
Result<Detections> GetBBoxes(const Value& prep_res, const Tensor& dets, const Tensor& labels);

std::array<float, 4> MapToOriginImage(float left, float top, float right, float bottom,
const float* scale_factor, float x_offset, float y_offset,
int ori_width, int ori_height);

std::vector<Tensor> GetDetsLabels(const Value& prep_res, const Value& infer_res);

protected:
Expand Down
11 changes: 6 additions & 5 deletions csrc/mmdeploy/codebase/mmdet/utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,12 @@ namespace mmdeploy::mmdet {

std::array<float, 4> MapToOriginImage(float left, float top, float right, float bottom,
const float* scale_factor, float x_offset, float y_offset,
int ori_width, int ori_height) {
left = std::max(left / scale_factor[0] + x_offset, 0.f);
top = std::max(top / scale_factor[1] + y_offset, 0.f);
right = std::min(right / scale_factor[2] + x_offset, (float)ori_width - 1.f);
bottom = std::min(bottom / scale_factor[3] + y_offset, (float)ori_height - 1.f);
int ori_width, int ori_height, int top_padding,
int left_padding) {
left = std::max((left - left_padding) / scale_factor[0] + x_offset, 0.f);
top = std::max((top - top_padding) / scale_factor[1] + y_offset, 0.f);
right = std::min((right - left_padding) / scale_factor[2] + x_offset, (float)ori_width - 1.f);
bottom = std::min((bottom - top_padding) / scale_factor[3] + y_offset, (float)ori_height - 1.f);
return {left, top, right, bottom};
}

Expand Down
3 changes: 2 additions & 1 deletion csrc/mmdeploy/codebase/mmdet/utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,8 @@
namespace mmdeploy::mmdet {
std::array<float, 4> MapToOriginImage(float left, float top, float right, float bottom,
const float* scale_factor, float x_offset, float y_offset,
int ori_width, int ori_height);
int ori_width, int ori_height, int top_padding,
int left_padding);
// @brief Filter results using score threshold and topk candidates.
// scores (Tensor): The scores, shape (num_bboxes, K).
// probs: The scores after being filtered
Expand Down
Loading