Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added gaudi example for rerank model finetuning #794

Merged
merged 1 commit into from
Sep 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 7 additions & 10 deletions InstructionTuning/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,16 +20,16 @@ Download a training file `alpaca_data.json` and upload it to the server with bel

```bash
# upload a training file
curl http://${your_ip}:8005/v1/finetune/upload_training_files -X POST -H "Content-Type: multipart/form-data" -F "files=@./alpaca_data.json"
curl http://${your_ip}:8015/v1/files -X POST -H "Content-Type: multipart/form-data" -F "file=@./alpaca_data.json" -F purpose="fine-tune"
```

### 2. Create fine-tuning job

After a training file `alpaca_data.json` is uploaded, use the following command to launch a finetuning job using `meta-llama/Llama-2-7b-chat-hf` as base model:
After a training file like `alpaca_data.json` is uploaded, use the following command to launch a finetuning job using `meta-llama/Llama-2-7b-chat-hf` as base model:

```bash
# create a finetuning job
curl http://${your_ip}:8005/v1/fine_tuning/jobs \
curl http://${your_ip}:8015/v1/fine_tuning/jobs \
-X POST \
-H "Content-Type: application/json" \
-d '{
Expand All @@ -44,17 +44,14 @@ Below commands show how to list finetuning jobs, retrieve a finetuning job, canc

```bash
# list finetuning jobs
curl http://${your_ip}:8005/v1/fine_tuning/jobs -X GET
curl http://${your_ip}:8015/v1/fine_tuning/jobs -X GET

# retrieve one finetuning job
curl http://localhost:8005/v1/fine_tuning/jobs/retrieve -X POST -H "Content-Type: application/json" -d '{
"fine_tuning_job_id": ${fine_tuning_job_id}}'
curl http://${your_ip}:8015/v1/fine_tuning/jobs/retrieve -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'

# cancel one finetuning job

curl http://localhost:8005/v1/fine_tuning/jobs/cancel -X POST -H "Content-Type: application/json" -d '{
"fine_tuning_job_id": ${fine_tuning_job_id}}'
curl http://${your_ip}:8015/v1/fine_tuning/jobs/cancel -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'

# list checkpoints of a finetuning job
curl http://${your_ip}:8005/v1/finetune/list_checkpoints -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'
curl http://${your_ip}:8015/v1/finetune/list_checkpoints -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'
```
Original file line number Diff line number Diff line change
Expand Up @@ -27,5 +27,5 @@ docker build -t opea/finetuning:latest --build-arg https_proxy=$https_proxy --bu
Start docker container with below command:

```bash
docker run -d --name="finetuning-server" -p 8005:8005 --runtime=runc --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy opea/finetuning:latest
docker run -d --name="finetuning-server" -p 8015:8015 --runtime=runc --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy opea/finetuning:latest
```
Original file line number Diff line number Diff line change
Expand Up @@ -27,5 +27,5 @@ Start docker container with below command:

```bash
export HF_TOKEN=${your_huggingface_token}
docker run --runtime=habana -e HABANA_VISIBLE_DEVICES=all -p 8005:8005 -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host -e https_proxy=$https_proxy -e http_proxy=$http_proxy -e no_proxy=$no_proxy -e HF_TOKEN=$HF_TOKEN opea/finetuning-gaudi:latest
docker run --runtime=habana -e HABANA_VISIBLE_DEVICES=all -p 8015:8015 -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host -e https_proxy=$https_proxy -e http_proxy=$http_proxy -e no_proxy=$no_proxy -e HF_TOKEN=$HF_TOKEN opea/finetuning-gaudi:latest
```
8 changes: 6 additions & 2 deletions RerankFinetuning/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,10 @@ Rerank model finetuning is the process of further training rerank model on a dat

Refer to the [Xeon Guide](./docker_compose/intel/cpu/xeon/README.md) for detail.

### Deploy Rerank Model Finetuning Service on Gaudi

Refer to the [Gaudi Guide](./docker_compose/intel/hpu/gaudi/README.md) for detail.

## Consume Rerank Model Finetuning Service

### 1. Upload a training file
Expand Down Expand Up @@ -47,10 +51,10 @@ Below commands show how to list finetuning jobs, retrieve a finetuning job, canc
curl http://${your_ip}:8015/v1/fine_tuning/jobs -X GET

# retrieve one finetuning job
curl http://localhost:8015/v1/fine_tuning/jobs/retrieve -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'
curl http://${your_ip}:8015/v1/fine_tuning/jobs/retrieve -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'

# cancel one finetuning job
curl http://localhost:8015/v1/fine_tuning/jobs/cancel -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'
curl http://${your_ip}:8015/v1/fine_tuning/jobs/cancel -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'

# list checkpoints of a finetuning job
curl http://${your_ip}:8015/v1/finetune/list_checkpoints -X POST -H "Content-Type: application/json" -d '{"fine_tuning_job_id": ${fine_tuning_job_id}}'
Expand Down
31 changes: 31 additions & 0 deletions RerankFinetuning/docker_compose/intel/hpu/gaudi/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
# Deploy Rerank Model Finetuning Service on Gaudi

This document outlines the deployment process for a rerank model finetuning service utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice on Intel Xeon server. The steps include Docker image creation, container deployment. We will publish the Docker images to Docker Hub, it will simplify the deployment process for this service.

## 🚀 Build Docker Images

First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.

### 1. Source Code install GenAIComps

```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
```

### 2. Build Docker Image

Build docker image with below command:

```bash
docker build -t opea/finetuning-gaudi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/finetuning/Dockerfile.intel_hpu .
```

### 3. Run Docker with CLI

Start docker container with below command:

```bash
export HF_TOKEN=${your_huggingface_token}
docker run --runtime=habana -e HABANA_VISIBLE_DEVICES=all -p 8015:8015 -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host -e https_proxy=$https_proxy -e http_proxy=$http_proxy -e no_proxy=$no_proxy -e HF_TOKEN=$HF_TOKEN opea/finetuning-gaudi:latest
```
Loading