Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add ChatQnA instructions for AIPC #356

Merged
merged 5 commits into from
Jul 2, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
240 changes: 240 additions & 0 deletions ChatQnA/docker/aipc/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,240 @@
# Build Mega Service of ChatQnA on AIPC

This document outlines the deployment process for a ChatQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on AIPC. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as `embedding`, `retriever`, `rerank`, and `llm`.

## 🚀 Build Docker Images

First of all, you need to build Docker Images locally and install the python package of it.

```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
```

### 1. Build Embedding Image

```bash
docker build --no-cache -t opea/embedding-tei:latest -f comps/embeddings/langchain/docker/Dockerfile .
```

### 2. Build Retriever Image

```bash
docker build --no-cache -t opea/retriever-redis:latest -f comps/retrievers/langchain/redis/docker/Dockerfile .
```

### 3. Build Rerank Image

```bash
docker build --no-cache -t opea/reranking-tei:latest -f comps/reranks/langchain/docker/Dockerfile .
```

### 4. Build LLM Image

We use [Ollama](https://ollama.com/) as our LLM service for AIPC. Please pre-download Ollama on your PC.

```bash
docker build --no-cache -t opea/llm-ollama:latest -f comps/llms/text-generation/ollama/Dockerfile .
```

### 5. Build Dataprep Image

```bash
docker build --no-cache -t opea/dataprep-redis:latest -f comps/dataprep/redis/langchain/docker/Dockerfile .
cd ..
```

### 6. Build MegaService Docker Image

To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `chatqna.py` Python script. Build MegaService Docker image via below command:

```bash
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/ChatQnA/docker
docker build --no-cache -t opea/chatqna:latest -f Dockerfile .
cd ../../..
```

### 7. Build UI Docker Image

Build frontend Docker image via below command:

```bash
cd GenAIExamples/ChatQnA/docker/ui/
docker build --no-cache -t opea/chatqna-ui:latest -f ./docker/Dockerfile .
cd ../../../..
```

Then run the command `docker images`, you will have the following 7 Docker Images:

1. `opea/dataprep-redis:latest`
2. `opea/embedding-tei:latest`
3. `opea/retriever-redis:latest`
4. `opea/reranking-tei:latest`
5. `opea/llm-ollama:latest`
6. `opea/chatqna:latest`
7. `opea/chatqna-ui:latest`

## 🚀 Start Microservices

### Setup Environment Variables

Since the `docker_compose.yaml` will consume some environment variables, you need to setup them in advance as below.

**Export the value of the public IP address of your AIPC to the `host_ip` environment variable**

> Change the External_Public_IP below with the actual IPV4 value

```
export host_ip="External_Public_IP"
Spycsh marked this conversation as resolved.
Show resolved Hide resolved
```

**Export the value of your Huggingface API token to the `your_hf_api_token` environment variable**

> Change the Your_Huggingface_API_Token below with tyour actual Huggingface API Token value

```
export your_hf_api_token="Your_Huggingface_API_Token"
```

**Append the value of the public IP address to the no_proxy list**

```
export your_no_proxy=${your_no_proxy},"External_Public_IP"
```

```bash
export no_proxy=${your_no_proxy}
export http_proxy=${your_http_proxy}
export https_proxy=${your_http_proxy}
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:6006"
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
export REDIS_URL="redis://${host_ip}:6379"
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export MEGA_SERVICE_HOST_IP=${host_ip}
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
export RERANK_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/chatqna"
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep"

export OLLAMA_ENDPOINT=http://${host_ip}:11434
```

Note: Please replace with `host_ip` with you external IP address, do not use localhost.

### Start all the services Docker Containers

> Before running the docker compose command, you need to be in the folder that has the docker compose yaml file

```bash
cd GenAIExamples/ChatQnA/docker/aipc/
docker compose -f docker_compose.yaml up -d

# let ollama service runs
ollama run llama3
```

### Validate Microservices

1. TEI Embedding Service

```bash
curl ${host_ip}:6006/embed \
-X POST \
-d '{"inputs":"What is Deep Learning?"}' \
-H 'Content-Type: application/json'
```

2. Embedding Microservice

```bash
curl http://${host_ip}:6000/v1/embeddings\
-X POST \
-d '{"text":"hello"}' \
-H 'Content-Type: application/json'
```

3. Retriever Microservice
To validate the retriever microservice, you need to generate a mock embedding vector of length 768 in Python script:

```bash
your_embedding=$(python3 -c "import random; embedding = [random.uniform(-1, 1) for _ in range(768)]; print(embedding)")
curl http://${host_ip}:7000/v1/retrieval \
-X POST \
-d '{"text":"What is the revenue of Nike in 2023?","embedding":"'"${your_embedding}"'"}' \
-H 'Content-Type: application/json'
```

4. TEI Reranking Service

```bash
curl http://${host_ip}:8808/rerank \
-X POST \
-d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \
-H 'Content-Type: application/json'
```

5. Reranking Microservice

```bash
curl http://${host_ip}:8000/v1/reranking\
-X POST \
-d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \
-H 'Content-Type: application/json'
```

6. Ollama Service

```bash
curl http://${host_ip}:11434/api/generate -d '{"model": "llama3", "prompt":"What is Deep Learning?"}'
```

7. LLM Microservice

```bash
curl http://${host_ip}:9000/v1/chat/completions\
-X POST \
-d '{"query":"What is Deep Learning?","max_new_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \
-H 'Content-Type: application/json'
```

8. MegaService

```bash
curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{
"messages": "What is the revenue of Nike in 2023?"
}'
```

9. Dataprep Microservice(Optional)

If you want to update the default knowledge base, you can use the following commands:

Update Knowledge Base via Local File Upload:

```bash
curl -X POST "http://${host_ip}:6007/v1/dataprep" \
-H "Content-Type: multipart/form-data" \
-F "files=@./nke-10k-2023.pdf"
```

This command updates a knowledge base by uploading a local file for processing. Update the file path according to your environment.

Add Knowledge Base via HTTP Links:

```bash
curl -X POST "http://${host_ip}:6007/v1/dataprep" \
-H "Content-Type: multipart/form-data" \
-F 'link_list=["https://opea.dev"]'
```

This command updates a knowledge base by submitting a list of HTTP links for processing.

## 🚀 Launch the UI

To access the frontend, open the following URL in your browser: http://{host_ip}:5173.
Loading