Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add docker compose deployment for ROCm example #1054

Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
112 changes: 112 additions & 0 deletions DocSum/docker_compose/amd/gpu/rocm/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
## 🚀 Start Microservices and MegaService

### Required Models

Default model is "Intel/neural-chat-7b-v3-3". Change "LLM_MODEL_ID" in environment variables below if you want to use another model.
For gated models, you also need to provide [HuggingFace token](https://huggingface.co/docs/hub/security-tokens) in "HUGGINGFACEHUB_API_TOKEN" environment variable.

### Setup Environment Variables

Since the `compose.yaml` will consume some environment variables, you need to setup them in advance as below.

```bash
export DOCSUM_TGI_IMAGE="ghcr.io/huggingface/text-generation-inference:2.3.1-rocm"
export DOCSUM_LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export HOST_IP=${host_ip}
export DOCSUM_TGI_SERVICE_PORT="18882"
export DOCSUM_TGI_LLM_ENDPOINT="http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
export DOCSUM_HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export DOCSUM_LLM_SERVER_PORT="8008"
export DOCSUM_BACKEND_SERVER_PORT="8888"
export DOCSUM_FRONTEND_PORT="5173"
```

Note: Please replace with `host_ip` with your external IP address, do not use localhost.

Note: In order to limit access to a subset of GPUs, please pass each device individually using one or more -device /dev/dri/rendered<node>, where <node> is the card index, starting from 128. (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)

Example for set isolation for 1 GPU

```
- /dev/dri/card0:/dev/dri/card0
- /dev/dri/renderD128:/dev/dri/renderD128
```

Example for set isolation for 2 GPUs

```
- /dev/dri/card0:/dev/dri/card0
- /dev/dri/renderD128:/dev/dri/renderD128
- /dev/dri/card1:/dev/dri/card1
- /dev/dri/renderD129:/dev/dri/renderD129
```

Please find more information about accessing and restricting AMD GPUs in the link (https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/docker.html#docker-restrict-gpus)

### Start Microservice Docker Containers

```bash
cd GenAIExamples/DocSum/docker_compose/amd/gpu/rocm
docker compose up -d
```

### Validate Microservices

1. TGI Service

```bash
curl http://${host_ip}:8008/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":64, "do_sample": true}}' \
-H 'Content-Type: application/json'
```

2. LLM Microservice

```bash
curl http://${host_ip}:9000/v1/chat/docsum \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' \
-H 'Content-Type: application/json'
```

3. MegaService

```bash
curl http://${host_ip}:8888/v1/docsum -H "Content-Type: application/json" -d '{
"messages": "Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":32, "language":"en", "stream":false
}'
```

## 🚀 Launch the Svelte UI

Open this URL `http://{host_ip}:5173` in your browser to access the frontend.

![project-screenshot](https://github.com/intel-ai-tce/GenAIExamples/assets/21761437/93b1ed4b-4b76-4875-927e-cc7818b4825b)

Here is an example for summarizing a article.

![image](https://github.com/intel-ai-tce/GenAIExamples/assets/21761437/67ecb2ec-408d-4e81-b124-6ded6b833f55)

## 🚀 Launch the React UI (Optional)

To access the React-based frontend, modify the UI service in the `compose.yaml` file. Replace `docsum-rocm-ui-server` service with the `docsum-rocm-react-ui-server` service as per the config below:

```yaml
docsum-rocm-react-ui-server:
image: ${REGISTRY:-opea}/docsum-react-ui:${TAG:-latest}
container_name: docsum-rocm-react-ui-server
depends_on:
- docsum-rocm-backend-server
ports:
- "5174:80"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- DOC_BASE_URL=${BACKEND_SERVICE_ENDPOINT}
```

Open this URL `http://{host_ip}:5175` in your browser to access the frontend.

![project-screenshot](../../../../assets/img/docsum-ui-react.png)
87 changes: 87 additions & 0 deletions DocSum/docker_compose/amd/gpu/rocm/compose.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
# Copyright (C) 2024 Intel Corporation
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think you should add AMD copyright.

# SPDX-License-Identifier: Apache-2.0

services:
docsum-tgi-service:
image: ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
container_name: docsum-tgi-service
ports:
- "${DOCSUM_TGI_SERVICE_PORT}:80"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
TGI_LLM_ENDPOINT: "http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
HUGGINGFACEHUB_API_TOKEN: ${DOCSUM_HUGGINGFACEHUB_API_TOKEN}
volumes:
- "/var/opea/docsum-service/data:/data"
shm_size: 1g
devices:
- /dev/kfd:/dev/kfd
cap_add:
- SYS_PTRACE
group_add:
- video
security_opt:
- seccomp:unconfined
ipc: host
command: --model-id ${DOCSUM_LLM_MODEL_ID}
docsum-llm-server:
image: ${REGISTRY:-opea}/llm-docsum-tgi:${TAG:-latest}
container_name: docsum-llm-server
depends_on:
- docsum-tgi-service
ports:
- "${DOCSUM_LLM_SERVER_PORT}:9000"
ipc: host
group_add:
- video
security_opt:
- seccomp:unconfined
cap_add:
- SYS_PTRACE
Comment on lines +39 to +42
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this some development version not intended for production, or why it's disabling security measures instead of adding them?

devices:
- /dev/kfd:/dev/kfd
- /dev/dri/${DOCSUM_CARD_ID}:/dev/dri/${DOCSUM_CARD_ID}
- /dev/dri/${DOCSUM_RENDER_ID}:/dev/dri/${DOCSUM_RENDER_ID}
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
TGI_LLM_ENDPOINT: "http://${HOST_IP}:${DOCSUM_TGI_SERVICE_PORT}"
HUGGINGFACEHUB_API_TOKEN: ${DOCSUM_HUGGINGFACEHUB_API_TOKEN}
restart: unless-stopped
docsum-backend-server:
image: ${REGISTRY:-opea}/docsum:${TAG:-latest}
container_name: docsum-backend-server
depends_on:
- docsum-tgi-service
- docsum-llm-server
ports:
- "${DOCSUM_BACKEND_SERVER_PORT}:8888"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- MEGA_SERVICE_HOST_IP=${HOST_IP}
- LLM_SERVICE_HOST_IP=${HOST_IP}
ipc: host
restart: always
docsum-ui-server:
image: ${REGISTRY:-opea}/docsum-ui:${TAG:-latest}
container_name: docsum-ui-server
depends_on:
- docsum-backend-server
ports:
- "${DOCSUM_FRONTEND_PORT}:5173"
environment:
- no_proxy=${no_proxy}
- https_proxy=${https_proxy}
- http_proxy=${http_proxy}
- DOC_BASE_URL="http://${HOST_IP}:${DOCSUM_BACKEND_PORT}/v1/docsum"
ipc: host
restart: always

networks:
default:
driver: bridge
184 changes: 184 additions & 0 deletions DocSum/tests/test_compose_on_rocm.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Also here.

# SPDX-License-Identifier: Apache-2.0

set -xe
IMAGE_REPO=${IMAGE_REPO:-"opea"}
IMAGE_TAG=${IMAGE_TAG:-"latest"}
echo "REGISTRY=IMAGE_REPO=${IMAGE_REPO}"
echo "TAG=IMAGE_TAG=${IMAGE_TAG}"
export REGISTRY=${IMAGE_REPO}
export TAG=${IMAGE_TAG}

WORKPATH=$(dirname "$PWD")
LOG_PATH="$WORKPATH/tests"
ip_address=$(hostname -I | awk '{print $1}')

function build_docker_images() {
cd $WORKPATH/docker_image_build
git clone https://github.com/opea-project/GenAIComps.git && cd GenAIComps && git checkout "${opea_branch:-"main"}" && cd ../

echo "Build all the images with --no-cache, check docker_image_build.log for details..."
service_list="docsum docsum-ui llm-docsum-tgi"
docker compose -f build.yaml build ${service_list} --no-cache > ${LOG_PATH}/docker_image_build.log

docker pull ghcr.io/huggingface/text-generation-inference:2.3.1-rocm
docker images && sleep 1s
}

function start_services() {
cd $WORKPATH/docker_compose/amd/gpu/rocm

export DOCSUM_TGI_IMAGE="ghcr.io/huggingface/text-generation-inference:2.3.1-rocm"
export DOCSUM_LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export HOST_IP=${ip_address}
export DOCSUM_TGI_SERVICE_PORT="8008"
export DOCSUM_TGI_LLM_ENDPOINT="http://${HOST_IP}:8008"
export DOCSUM_HUGGINGFACEHUB_API_TOKEN=${HUGGINGFACEHUB_API_TOKEN}
export DOCSUM_LLM_SERVER_PORT="9000"
export DOCSUM_BACKEND_SERVER_PORT="8888"
export DOCSUM_FRONTEND_PORT="5552"
export MEGA_SERVICE_HOST_IP=${ip_address}
export LLM_SERVICE_HOST_IP=${ip_address}
export BACKEND_SERVICE_ENDPOINT="http://${ip_address}:8888/v1/docsum"

sed -i "s/backend_address/$ip_address/g" $WORKPATH/ui/svelte/.env

# Start Docker Containers
docker compose up -d > ${LOG_PATH}/start_services_with_compose.log

until [[ "$n" -ge 100 ]]; do
docker logs docsum-tgi-service > ${LOG_PATH}/tgi_service_start.log
if grep -q Connected ${LOG_PATH}/tgi_service_start.log; then
break
fi
sleep 5s
n=$((n+1))
done
}

function validate_services() {
local URL="$1"
local EXPECTED_RESULT="$2"
local SERVICE_NAME="$3"
local DOCKER_NAME="$4"
local INPUT_DATA="$5"

local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL")
if [ "$HTTP_STATUS" -eq 200 ]; then
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."

local CONTENT=$(curl -s -X POST -d "$INPUT_DATA" -H 'Content-Type: application/json' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log)

if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
echo "[ $SERVICE_NAME ] Content is as expected."
else
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
exit 1
fi
else
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
exit 1
fi
sleep 1s
}

function validate_microservices() {
# Check if the microservices are running correctly.

# tgi for llm service
validate_services \
"${ip_address}:8008/generate" \
"generated_text" \
"tgi-llm" \
"tgi-service" \
'{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}'

# llm microservice
validate_services \
"${ip_address}:9000/v1/chat/docsum" \
"data: " \
"llm" \
"llm-docsum-server" \
'{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}'
}

function validate_megaservice() {
local SERVICE_NAME="mega-docsum"
local DOCKER_NAME="docsum-backend-server"
local EXPECTED_RESULT="embedding"
local INPUT_DATA="messages=Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."
local URL="${ip_address}:8888/v1/docsum"
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -F "$INPUT_DATA" -H 'Content-Type: multipart/form-data' "$URL")
if [ "$HTTP_STATUS" -eq 200 ]; then
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."

local CONTENT=$(curl -s -X POST -F "$INPUT_DATA" -H 'Content-Type: multipart/form-data' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log)

if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
echo "[ $SERVICE_NAME ] Content is as expected."
else
echo "[ $SERVICE_NAME ] Content does not match the expected result: $CONTENT"
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
exit 1
fi
else
echo "[ $SERVICE_NAME ] HTTP status is not 200. Received status was $HTTP_STATUS"
docker logs ${DOCKER_NAME} >> ${LOG_PATH}/${SERVICE_NAME}.log
exit 1
fi
sleep 1s
}

function validate_frontend() {
cd $WORKPATH/ui/svelte
local conda_env_name="OPEA_e2e"
export PATH=${HOME}/miniforge3/bin/:$PATH
if conda info --envs | grep -q "$conda_env_name"; then
echo "$conda_env_name exist!"
else
conda create -n ${conda_env_name} python=3.12 -y
fi
source activate ${conda_env_name}

sed -i "s/localhost/$ip_address/g" playwright.config.ts

conda install -c conda-forge nodejs -y
npm install && npm ci && npx playwright install --with-deps
node -v && npm -v && pip list

exit_status=0
npx playwright test || exit_status=$?

if [ $exit_status -ne 0 ]; then
echo "[TEST INFO]: ---------frontend test failed---------"
exit $exit_status
else
echo "[TEST INFO]: ---------frontend test passed---------"
fi
}

function stop_docker() {
cd $WORKPATH/docker_compose/amd/gpu/rocm
docker compose stop && docker compose rm -f
}

function main() {

stop_docker

if [[ "$IMAGE_REPO" == "opea" ]]; then build_docker_images; fi
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Would be good to make all scripts shellcheck clean (apt install shellscheck; shellcheck *.sh).

start_services

validate_microservices
validate_megaservice
#validate_frontend

stop_docker
echo y | docker system prune

}

main
Loading