Skip to content

Commit

Permalink
Add gpu support for ChatQnA (#308)
Browse files Browse the repository at this point in the history
* add gpu support for chatqna

Signed-off-by: Ding, Ke <[email protected]>

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Signed-off-by: Ding, Ke <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
kding1 and pre-commit-ci[bot] authored Jun 21, 2024
1 parent 4fecd6a commit e80e567
Show file tree
Hide file tree
Showing 4 changed files with 470 additions and 1 deletion.
4 changes: 4 additions & 0 deletions ChatQnA/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,10 @@ Refer to the [Gaudi Guide](./docker/gaudi/README.md) for instructions on deployi

Refer to the [Xeon Guide](./docker/xeon/README.md) for instructions on deploying ChatQnA on Xeon.

## Deploy ChatQnA on NVIDIA GPU

Refer to the [NVIDIA GPU Guide](./docker/gpu/README.md) for instructions on deploying ChatQnA on NVIDIA GPU.

## Deploy ChatQnA into Kubernetes on Xeon & Gaudi

Refer to the [Kubernetes Guide](./kubernetes/manifests/README.md) for instructions on deploying ChatQnA into Kubernetes on Xeon & Gaudi.
253 changes: 253 additions & 0 deletions ChatQnA/docker/gpu/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,253 @@
# Build MegaService of ChatQnA on NVIDIA GPU

This document outlines the deployment process for a ChatQnA application utilizing the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline on NVIDIA GPU platform. The steps include Docker image creation, container deployment via Docker Compose, and service execution to integrate microservices such as embedding, retriever, rerank, and llm. We will publish the Docker images to Docker Hub, it will simplify the deployment process for this service.

## 🚀 Build Docker Images

First of all, you need to build Docker Images locally. This step can be ignored after the Docker images published to Docker hub.

### 1. Source Code install GenAIComps

```bash
git clone https://github.com/opea-project/GenAIComps.git
cd GenAIComps
```

### 2. Build Embedding Image

```bash
docker build --no-cache -t opea/embedding-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/embeddings/langchain/docker/Dockerfile .
```

### 3. Build Retriever Image

```bash
docker build --no-cache -t opea/retriever-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/retrievers/langchain/redis/docker/Dockerfile .
```

### 4. Build Rerank Image

```bash
docker build --no-cache -t opea/reranking-tei:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/reranks/langchain/docker/Dockerfile .
```

### 5. Build LLM Image

```bash
docker build --no-cache -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .
```

### 6. Build Dataprep Image

```bash
docker build --no-cache -t opea/dataprep-redis:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/dataprep/redis/langchain/docker/Dockerfile .
```

### 7. Build MegaService Docker Image

To construct the Mega Service, we utilize the [GenAIComps](https://github.com/opea-project/GenAIComps.git) microservice pipeline within the `chatqna.py` Python script. Build the MegaService Docker image using the command below:

```bash
git clone https://github.com/opea-project/GenAIExamples.git
cd GenAIExamples/ChatQnA/docker
docker build --no-cache -t opea/chatqna:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f Dockerfile .
cd ../../..
```

### 8. Build UI Docker Image

Construct the frontend Docker image using the command below:

```bash
cd GenAIExamples/ChatQnA/docker/ui/
docker build --no-cache -t opea/chatqna-ui:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f ./docker/Dockerfile .
cd ../../../..
```

Then run the command `docker images`, you will have the following 7 Docker Images:

1. `opea/embedding-tei:latest`
2. `opea/retriever-redis:latest`
3. `opea/reranking-tei:latest`
4. `opea/llm-tgi:latest`
5. `opea/dataprep-redis:latest`
6. `opea/chatqna:latest`
7. `opea/chatqna-ui:latest`

## 🚀 Start MicroServices and MegaService

### Setup Environment Variables

Since the `docker_compose.yaml` will consume some environment variables, you need to setup them in advance as below.

```bash
export no_proxy=${your_no_proxy}
export http_proxy=${your_http_proxy}
export https_proxy=${your_http_proxy}
export EMBEDDING_MODEL_ID="BAAI/bge-base-en-v1.5"
export RERANK_MODEL_ID="BAAI/bge-reranker-base"
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"
export TEI_EMBEDDING_ENDPOINT="http://${host_ip}:8090"
export TEI_RERANKING_ENDPOINT="http://${host_ip}:8808"
export TGI_LLM_ENDPOINT="http://${host_ip}:8008"
export REDIS_URL="redis://${host_ip}:6379"
export INDEX_NAME="rag-redis"
export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export MEGA_SERVICE_HOST_IP=${host_ip}
export EMBEDDING_SERVICE_HOST_IP=${host_ip}
export RETRIEVER_SERVICE_HOST_IP=${host_ip}
export RERANK_SERVICE_HOST_IP=${host_ip}
export LLM_SERVICE_HOST_IP=${host_ip}
export BACKEND_SERVICE_ENDPOINT="http://${host_ip}:8888/v1/chatqna"
export DATAPREP_SERVICE_ENDPOINT="http://${host_ip}:6007/v1/dataprep"
```

Note: Please replace with `host_ip` with you external IP address, do **NOT** use localhost.

### Start all the services Docker Containers

```bash
cd GenAIExamples/ChatQnA/docker/gpu/
docker compose -f docker_compose.yaml up -d
```

### Validate MicroServices and MegaService

1. TEI Embedding Service

```bash
curl ${host_ip}:8090/embed \
-X POST \
-d '{"inputs":"What is Deep Learning?"}' \
-H 'Content-Type: application/json'
```

2. Embedding Microservice

```bash
curl http://${host_ip}:6000/v1/embeddings \
-X POST \
-d '{"text":"hello"}' \
-H 'Content-Type: application/json'
```

3. Retriever Microservice

To consume the retriever microservice, you need to generate a mock embedding vector of length 768 in Python script:

```python
import random

embedding = [random.uniform(-1, 1) for _ in range(768)]
print(embedding)
```

Then substitute your mock embedding vector for the `${your_embedding}` in the following `curl` command:

```bash
curl http://${host_ip}:7000/v1/retrieval \
-X POST \
-d '{"text":"test", "embedding":${your_embedding}}' \
-H 'Content-Type: application/json'
```

4. TEI Reranking Service

```bash
curl http://${host_ip}:8808/rerank \
-X POST \
-d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \
-H 'Content-Type: application/json'
```

5. Reranking Microservice

```bash
curl http://${host_ip}:8000/v1/reranking \
-X POST \
-d '{"initial_query":"What is Deep Learning?", "retrieved_docs": [{"text":"Deep Learning is not..."}, {"text":"Deep learning is..."}]}' \
-H 'Content-Type: application/json'
```

6. TGI Service

```bash
curl http://${host_ip}:8008/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":64, "do_sample": true}}' \
-H 'Content-Type: application/json'
```

7. LLM Microservice

```bash
curl http://${host_ip}:9000/v1/chat/completions \
-X POST \
-d '{"query":"What is Deep Learning?","max_new_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \
-H 'Content-Type: application/json'
```

8. MegaService

```bash
curl http://${host_ip}:8888/v1/chatqna -H "Content-Type: application/json" -d '{
"messages": "What is the revenue of Nike in 2023?"
}'
```

9. Dataprep Microservice(Optional)

If you want to update the default knowledge base, you can use the following commands:

Update Knowledge Base via Local File Upload:

```bash
curl -X POST "http://${host_ip}:6007/v1/dataprep" \
-H "Content-Type: multipart/form-data" \
-F "files=@./nke-10k-2023.pdf"
```

This command updates a knowledge base by uploading a local file for processing. Update the file path according to your environment.

Add Knowledge Base via HTTP Links:

```bash
curl -X POST "http://${host_ip}:6007/v1/dataprep" \
-H "Content-Type: multipart/form-data" \
-F 'link_list=["https://opea.dev"]'
```

This command updates a knowledge base by submitting a list of HTTP links for processing.

## Enable LangSmith for Monotoring Application (Optional)

LangSmith offers tools to debug, evaluate, and monitor language models and intelligent agents. It can be used to assess benchmark data for each microservice. Before launching your services with `docker compose -f docker_compose.yaml up -d`, you need to enable LangSmith tracing by setting the `LANGCHAIN_TRACING_V2` environment variable to true and configuring your LangChain API key.

Here's how you can do it:

1. Install the latest version of LangSmith:

```bash
pip install -U langsmith
```

2. Set the necessary environment variables:

```bash
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=ls_...
```

## 🚀 Launch the UI

To access the frontend, open the following URL in your browser: http://{host_ip}:5173. By default, the UI runs on port 5173 internally. If you prefer to use a different host port to access the frontend, you can modify the port mapping in the `docker_compose.yaml` file as shown below:

```yaml
chaqna-ui-server:
image: opea/chatqna-ui:latest
...
ports:
- "80:5173"
```
![project-screenshot](../../assets/img/chat_ui_init.png)
Loading

0 comments on commit e80e567

Please sign in to comment.