Skip to content

Commit

Permalink
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add a new embedding MosecEmbedding.
Browse files Browse the repository at this point in the history
Signed-off-by: Jincheng Miao <[email protected]>
miaojinc committed Jun 18, 2024
1 parent 8ebe2bf commit fad4346
Showing 11 changed files with 434 additions and 0 deletions.
33 changes: 33 additions & 0 deletions comps/embeddings/langchain-mosec/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
# build Mosec endpoint docker image

```
docker build --build-arg http_proxy=$http_proxy --build-arg https_proxy=$https_proxy -t langchain-mosec:latest -f comps/embeddings/langchain-mosec/mosec-docker/Dockerfile .
```

# build embedding microservice docker image

```
docker build --build-arg http_proxy=$http_proxy --build-arg https_proxy=$https_proxy -t opea/embedding-langchain-mosec:latest -f comps/embeddings/langchain-mosec/docker/Dockerfile .
```

# launch Mosec endpoint docker container

```
docker run -d --name="embedding-langchain-mosec-endpoint" -p 6001:8000 langchain-mosec:latest
```

# launch embedding microservice docker container

```
export MOSEC_EMBEDDING_ENDPOINT=http://127.0.0.1:6001
docker run -d --name="embedding-langchain-mosec-server" -e http_proxy=$http_proxy -e https_proxy=$https_proxy -p 6000:6000 --ipc=host -e MOSEC_EMBEDDING_ENDPOINT=$MOSEC_EMBEDDING_ENDPOINT opea/embedding-langchain-mosec:latest
```

# run client test

```
curl localhost:6000/v1/embeddings \
-X POST \
-d '{"text":"Hello, world!"}' \
-H 'Content-Type: application/json'
```
2 changes: 2 additions & 0 deletions comps/embeddings/langchain-mosec/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
28 changes: 28 additions & 0 deletions comps/embeddings/langchain-mosec/docker/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

FROM langchain/langchain:latest

RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
libgl1-mesa-glx \
libjemalloc-dev \
vim

RUN useradd -m -s /bin/bash user && \
mkdir -p /home/user && \
chown -R user /home/user/

USER user

COPY comps /home/user/comps

RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/comps/embeddings/langchain-mosec/requirements.txt

ENV PYTHONPATH=$PYTHONPATH:/home/user

WORKDIR /home/user/comps/embeddings/langchain-mosec

ENTRYPOINT ["python", "embedding_mosec.py"]

Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

version: "3.8"

services:
embedding:
image: opea/embedding-langchain-mosec:latest
container_name: embedding-langchain-mosec-server
ports:
- "6000:6000"
ipc: host
environment:
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
MOSEC_EMBEDDING_ENDPOINT: ${MOSEC_EMBEDDING_ENDPOINT}
LANGCHAIN_API_KEY: ${LANGCHAIN_API_KEY}
restart: unless-stopped

networks:
default:
driver: bridge
74 changes: 74 additions & 0 deletions comps/embeddings/langchain-mosec/embedding_mosec.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import os
import time
from typing import List, Optional

from langchain_community.embeddings import OpenAIEmbeddings
from langsmith import traceable

from comps import (
EmbedDoc768,
ServiceType,
TextDoc,
opea_microservices,
register_microservice,
register_statistics,
statistics_dict,
)


class MosecEmbeddings(OpenAIEmbeddings):
def _get_len_safe_embeddings(
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
) -> List[List[float]]:
_chunk_size = chunk_size or self.chunk_size
batched_embeddings: List[List[float]] = []
response = self.client.create(input=texts, **self._invocation_params)
if not isinstance(response, dict):
response = response.model_dump()
batched_embeddings.extend(r["embedding"] for r in response["data"])

_cached_empty_embedding: Optional[List[float]] = None

def empty_embedding() -> List[float]:
nonlocal _cached_empty_embedding
if _cached_empty_embedding is None:
average_embedded = self.client.create(input="", **self._invocation_params)
if not isinstance(average_embedded, dict):
average_embedded = average_embedded.model_dump()
_cached_empty_embedding = average_embedded["data"][0]["embedding"]
return _cached_empty_embedding

return [e if e is not None else empty_embedding() for e in batched_embeddings]


@register_microservice(
name="opea_service@embedding_mosec",
service_type=ServiceType.EMBEDDING,
endpoint="/v1/embeddings",
host="0.0.0.0",
port=6000,
input_datatype=TextDoc,
output_datatype=EmbedDoc768,
)
@traceable(run_type="embedding")
@register_statistics(names=["opea_service@embedding_mosec"])
def embedding(input: TextDoc) -> EmbedDoc768:
start = time.time()
embed_vector = embeddings.embed_query(input.text)
embed_vector = embed_vector[:768] # Keep only the first 768 elements
res = EmbedDoc768(text=input.text, embedding=embed_vector)
statistics_dict["opea_service@embedding_mosec"].append_latency(time.time() - start, None)
return res


if __name__ == "__main__":
MOSEC_EMBEDDING_ENDPOINT = os.environ.get("MOSEC_EMBEDDING_ENDPOINT", "http://127.0.0.1:8080")
os.environ["OPENAI_API_BASE"] = MOSEC_EMBEDDING_ENDPOINT
os.environ["OPENAI_API_KEY"] = "Dummy key"
MODEL_ID = "/root/bge-large-zh"
embeddings = MosecEmbeddings(model=MODEL_ID)
print("Mosec Embedding initialized.")
opea_microservices["opea_service@embedding_mosec"].start()
23 changes: 23 additions & 0 deletions comps/embeddings/langchain-mosec/mosec-docker/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

From ubuntu:22.04
ARG DEBIAN_FRONTEND=noninteractive

ENV GLIBC_TUNABLES glibc.cpu.x86_shstk=permissive

COPY comps /root/comps

RUN apt update && apt install -y python3 python3-pip
RUN pip3 install torch==2.2.2 torchvision --index-url https://download.pytorch.org/whl/cpu
RUN pip3 install intel-extension-for-pytorch==2.2.0
RUN pip3 install transformers
RUN pip3 install llmspec mosec

RUN cd /root/ && export HF_ENDPOINT=https://hf-mirror.com && huggingface-cli download --resume-download BAAI/bge-large-zh --local-dir /root/bge-large-zh

ENV EMB_MODEL="/root/bge-large-zh/"

WORKDIR /root/comps/embeddings/langchain-mosec/mosec-docker

CMD ["python3", "server-ipex.py"]
43 changes: 43 additions & 0 deletions comps/embeddings/langchain-mosec/mosec-docker/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
# Embedding Server

## 1. Introduction

This service has an OpenAI compatible restful API to extract text features.
It is dedicated to be used on Xeon to accelerate embedding model serving.
Currently the local model is BGE-large-zh.

## 2. Quick Start

### 2.1 Build Docker image

```shell
docker build -t embedding:latest .
```

### 2.2 Launch server

```shell
docker run -itd -p 8000:8000 embedding:latest
```

### 2.3 Client test

- Restful API by curl

```shell
curl -X POST http://127.0.0.1:8000/v1/embeddings -H "Content-Type: application/json" -d '{ "model": "/root/bge-large-zh/", "input": "hello world"}'
```

- generate embedding from python

```python
DEFAULT_MODEL = "/root/bge-large-zh/"
SERVICE_URL = "http://127.0.0.1:8000"
INPUT_STR = "Hello world!"

client = Client(api_key="fake", base_url=SERVICE_URL)
emb = client.embeddings.create(
model=DEFAULT_MODEL,
input=INPUT_STR,
)
```
119 changes: 119 additions & 0 deletions comps/embeddings/langchain-mosec/mosec-docker/server-ipex.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import base64
import os
from typing import List, Union

import intel_extension_for_pytorch as ipex
import numpy as np
import torch # type: ignore
import torch.nn.functional as F # type: ignore
import transformers # type: ignore
from llmspec import EmbeddingData, EmbeddingRequest, EmbeddingResponse, TokenUsage
from mosec import ClientError, Runtime, Server, Worker

DEFAULT_MODEL = "/root/bge-large-zh/"


class Embedding(Worker):
def __init__(self):
self.model_name = os.environ.get("EMB_MODEL", DEFAULT_MODEL)
self.tokenizer = transformers.AutoTokenizer.from_pretrained(self.model_name)
self.model = transformers.AutoModel.from_pretrained(self.model_name)
self.device = torch.cuda.current_device() if torch.cuda.is_available() else "cpu"

self.model = self.model.to(self.device)
self.model.eval()

# jit trace model
self.model = ipex.optimize(self.model, dtype=torch.bfloat16)
vocab_size = self.model.config.vocab_size
batch_size = 16
seq_length = 512
d = torch.randint(vocab_size, size=[batch_size, seq_length])
t = torch.randint(0, 1, size=[batch_size, seq_length])
m = torch.randint(1, 2, size=[batch_size, seq_length])
self.model = torch.jit.trace(self.model, [d, t, m], check_trace=False, strict=False)
self.model = torch.jit.freeze(self.model)
self.model(d, t, m)

def get_embedding_with_token_count(self, sentences: Union[str, List[Union[str, List[int]]]]):
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
# First element of model_output contains all token embeddings
token_embeddings = model_output["last_hidden_state"]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)

# Tokenize sentences
# TODO: support `List[List[int]]` input
encoded_input = self.tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
inputs = encoded_input.to(self.device)
token_count = inputs["attention_mask"].sum(dim=1).tolist()
# Compute token embeddings
model_output = self.model(**inputs)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, inputs["attention_mask"])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)

return token_count, sentence_embeddings

def deserialize(self, data: bytes) -> EmbeddingRequest:
return EmbeddingRequest.from_bytes(data)

def serialize(self, data: EmbeddingResponse) -> bytes:
return data.to_json()

def forward(self, data: List[EmbeddingRequest]) -> List[EmbeddingResponse]:
inputs = []
inputs_lens = []
for d in data:
inputs.extend(d.input if isinstance(d.input, list) else [d.input])
inputs_lens.append(len(d.input) if isinstance(d.input, list) else 1)
token_cnt, embeddings = self.get_embedding_with_token_count(inputs)

embeddings = embeddings.detach()
if self.device != "cpu":
embeddings = embeddings.cpu()
embeddings = embeddings.numpy()
embeddings = [emb.tolist() for emb in embeddings]

resp = []
emb_idx = 0
for lens in inputs_lens:
token_count = sum(token_cnt[emb_idx : emb_idx + lens])
resp.append(
EmbeddingResponse(
data=[
EmbeddingData(embedding=emb, index=i)
for i, emb in enumerate(embeddings[emb_idx : emb_idx + lens])
],
model=self.model_name,
usage=TokenUsage(
prompt_tokens=token_count,
# No completions performed, only embeddings generated.
completion_tokens=0,
total_tokens=token_count,
),
)
)
emb_idx += lens
return resp


if __name__ == "__main__":
MAX_BATCH_SIZE = int(os.environ.get("MAX_BATCH_SIZE", 128))
MAX_WAIT_TIME = int(os.environ.get("MAX_WAIT_TIME", 10))
server = Server()
emb = Runtime(Embedding, max_batch_size=MAX_BATCH_SIZE, max_wait_time=MAX_WAIT_TIME)
server.register_runtime(
{
"/v1/embeddings": [emb],
"/embeddings": [emb],
}
)
server.run()
18 changes: 18 additions & 0 deletions comps/embeddings/langchain-mosec/mosec-docker/test-embedding.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
"""OpenAI embedding client example."""

from openai import Client

DEFAULT_MODEL = "/root/bge-large-zh/"
SERVICE_URL = "http://127.0.0.1:8000"
INPUT_STR = "Hello world!"

client = Client(api_key="fake", base_url=SERVICE_URL)
emb = client.embeddings.create(
model=DEFAULT_MODEL,
input=INPUT_STR,
)

print(len(emb.data)) # type: ignore
print(emb.data[0].embedding) # type: ignore
9 changes: 9 additions & 0 deletions comps/embeddings/langchain-mosec/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
docarray[full]
fastapi
langchain
langchain_community
openai
opentelemetry-api
opentelemetry-exporter-otlp
opentelemetry-sdk
shortuuid
63 changes: 63 additions & 0 deletions tests/test_embeddings_langchain-mosec.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
#!/bin/bash
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

set -xe

WORKPATH=$(dirname "$PWD")
ip_address=$(hostname -I | awk '{print $1}')

function build_mosec_docker_images() {
cd $WORKPATH
echo $(pwd)
docker build --build-arg http_proxy=$http_proxy --build-arg https_proxy=$https_proxy --no-cache -t langchain-mosec:comps -f comps/embeddings/langchain-mosec/mosec-docker/Dockerfile .
}

function build_docker_images() {
cd $WORKPATH
echo $(pwd)
docker build --build-arg http_proxy=$http_proxy --build-arg https_proxy=$https_proxy --no-cache -t opea/embedding-langchain-mosec:comps -f comps/embeddings/langchain-mosec/docker/Dockerfile .
}

function start_service() {
mosec_endpoint=5001
model="BAAI/bge-large-en-v1.5"
unset http_proxy
docker run -d --name="test-comps-embedding-langchain-mosec-endpoint" -p $mosec_endpoint:8000 langchain-mosec:comps
export MOSEC_EMBEDDING_ENDPOINT="http://${ip_address}:${mosec_endpoint}"
mosec_service_port=5002
docker run -d --name="test-comps-embedding-langchain-mosec-server" -e http_proxy=$http_proxy -e https_proxy=$https_proxy -p ${mosec_service_port}:6000 --ipc=host -e MOSEC_EMBEDDING_ENDPOINT=$MOSEC_EMBEDDING_ENDPOINT opea/embedding-langchain-mosec:comps
sleep 3m
}

function validate_microservice() {
mosec_service_port=5002
http_proxy="" curl http://${ip_address}:$mosec_service_port/v1/embeddings \
-X POST \
-d '{"text":"What is Deep Learning?"}' \
-H 'Content-Type: application/json'
}

function stop_docker() {
cid=$(docker ps -aq --filter "name=test-comps-embedding-langchain-mosec-*")
if [[ ! -z "$cid" ]]; then docker stop $cid && docker rm $cid && sleep 1s; fi
}

function main() {

stop_docker

build_mosec_docker_images

build_docker_images

start_service

validate_microservice

stop_docker
echo y | docker system prune

}

main

0 comments on commit fad4346

Please sign in to comment.