Skip to content

Commit

Permalink
Merge branch 'main' into pr_align_embedding_inputs_20241112
Browse files Browse the repository at this point in the history
  • Loading branch information
XinyaoWa authored Nov 13, 2024
2 parents 792e419 + 550325d commit 0f25f26
Show file tree
Hide file tree
Showing 10 changed files with 334 additions and 0 deletions.
4 changes: 4 additions & 0 deletions .github/workflows/docker/compose/llms-compose.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,10 @@ services:
build:
dockerfile: comps/llms/text-generation/predictionguard/Dockerfile
image: ${REGISTRY:-opea}/llm-textgen-predictionguard:${TAG:-latest}
llm-docsum-vllm:
build:
dockerfile: comps/llms/summarization/vllm/langchain/Dockerfile
image: ${REGISTRY:-opea}/llm-docsum-vllm:${TAG:-latest}
llm-faqgen-vllm:
build:
dockerfile: comps/llms/faq-generation/vllm/langchain/Dockerfile
Expand Down
2 changes: 2 additions & 0 deletions comps/cores/mega/gateway.py
Original file line number Diff line number Diff line change
Expand Up @@ -433,6 +433,8 @@ async def handle_request(self, request: Request):
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=stream_opt,
language=chat_request.language if chat_request.language else "auto",
model=chat_request.model if chat_request.model else None,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={data["type"]: prompt}, llm_parameters=parameters
Expand Down
28 changes: 28 additions & 0 deletions comps/llms/summarization/vllm/langchain/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

FROM python:3.11-slim

ARG ARCH="cpu"

RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
libgl1-mesa-glx \
libjemalloc-dev

RUN useradd -m -s /bin/bash user && \
mkdir -p /home/user && \
chown -R user /home/user/

USER user

COPY comps /home/user/comps

RUN pip install --no-cache-dir --upgrade pip setuptools && \
if [ ${ARCH} = "cpu" ]; then pip install --no-cache-dir torch torchvision --index-url https://download.pytorch.org/whl/cpu; fi && \
pip install --no-cache-dir -r /home/user/comps/llms/summarization/vllm/langchain/requirements.txt

ENV PYTHONPATH=$PYTHONPATH:/home/user

WORKDIR /home/user/comps/llms/summarization/vllm/langchain

ENTRYPOINT ["bash", "entrypoint.sh"]
112 changes: 112 additions & 0 deletions comps/llms/summarization/vllm/langchain/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
# Document Summary vLLM Microservice

This microservice leverages LangChain to implement summarization strategies and facilitate LLM inference using vLLM.
[vLLM](https://github.com/vllm-project/vllm) is a fast and easy-to-use library for LLM inference and serving, it delivers state-of-the-art serving throughput with a set of advanced features such as PagedAttention, Continuous batching and etc.. Besides GPUs, vLLM already supported [Intel CPUs](https://www.intel.com/content/www/us/en/products/overview.html) and [Gaudi accelerators](https://habana.ai/products).

## 🚀1. Start Microservice with Python 🐍 (Option 1)

To start the LLM microservice, you need to install python packages first.

### 1.1 Install Requirements

```bash
pip install -r requirements.txt
```

### 1.2 Start LLM Service

```bash
export HF_TOKEN=${your_hf_api_token}
export LLM_MODEL_ID=${your_hf_llm_model}
docker run -p 8008:80 -v ./data:/data --name llm-docsum-vllm --shm-size 1g opea/vllm:hpu --model-id ${LLM_MODEL_ID}
```

### 1.3 Verify the vLLM Service

```bash
curl http://${your_ip}:8008/v1/chat/completions \
-X POST \
-H "Content-Type: application/json" \
-d '{"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "user", "content": "What is Deep Learning? "}]}'
```

### 1.4 Start LLM Service with Python Script

```bash
export vLLM_ENDPOINT="http://${your_ip}:8008"
python llm.py
```

## 🚀2. Start Microservice with Docker 🐳 (Option 2)

If you start an LLM microservice with docker, the `docker_compose_llm.yaml` file will automatically start a vLLM/vLLM service with docker.

To setup or build the vLLM image follow the instructions provided in [vLLM Gaudi](https://github.com/opea-project/GenAIComps/tree/main/comps/llms/text-generation/vllm/langchain#22-vllm-on-gaudi)

### 2.1 Setup Environment Variables

In order to start vLLM and LLM services, you need to setup the following environment variables first.

```bash
export HF_TOKEN=${your_hf_api_token}
export vLLM_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL_ID=${your_hf_llm_model}
```

### 2.2 Build Docker Image

```bash
cd ../../../../../
docker build -t opea/llm-docsum-vllm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/summarization/vllm/langchain/Dockerfile .
```

To start a docker container, you have two options:

- A. Run Docker with CLI
- B. Run Docker with Docker Compose

You can choose one as needed.

### 2.3 Run Docker with CLI (Option A)

```bash
docker run -d --name="llm-docsum-vllm-server" -p 9000:9000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e vLLM_ENDPOINT=$vLLM_ENDPOINT -e HF_TOKEN=$HF_TOKEN opea/llm-docsum-vllm:latest
```

### 2.4 Run Docker with Docker Compose (Option B)

```bash
docker compose -f docker_compose_llm.yaml up -d
```

## 🚀3. Consume LLM Service

### 3.1 Check Service Status

```bash
curl http://${your_ip}:9000/v1/health_check\
-X GET \
-H 'Content-Type: application/json'
```

### 3.2 Consume LLM Service

```bash
# Enable streaming to receive a streaming response. By default, this is set to True.
curl http://${your_ip}:9000/v1/chat/docsum \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.", "max_tokens":32, "language":"en"}' \
-H 'Content-Type: application/json'

# Disable streaming to receive a non-streaming response.
curl http://${your_ip}:9000/v1/chat/docsum \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.", "max_tokens":32, "language":"en", "streaming":false}' \
-H 'Content-Type: application/json'

# Use Chinese mode. By default, language is set to "en"
curl http://${your_ip}:9000/v1/chat/docsum \
-X POST \
-d '{"query":"2024年9月26日,北京——今日,英特尔正式发布英特尔® 至强® 6性能核处理器(代号Granite Rapids),为AI、数据分析、科学计算等计算密集型业务提供卓越性能。", "max_tokens":32, "language":"zh", "streaming":false}' \
-H 'Content-Type: application/json'
```
2 changes: 2 additions & 0 deletions comps/llms/summarization/vllm/langchain/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
44 changes: 44 additions & 0 deletions comps/llms/summarization/vllm/langchain/docker_compose_llm.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

version: "3.8"

services:
vllm-service:
image: opea/vllm:hpu
container_name: vllm-gaudi-server
ports:
- "8008:80"
volumes:
- "./data:/data"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HF_TOKEN}
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
LLM_MODEL_ID: ${LLM_MODEL_ID}
runtime: habana
cap_add:
- SYS_NICE
ipc: host
command: --enforce-eager --model $LLM_MODEL_ID --tensor-parallel-size 1 --host 0.0.0.0 --port 80
llm:
image: opea/llm-docsum-vllm:latest
container_name: llm-docsum-vllm-server
ports:
- "9000:9000"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
vLLM_ENDPOINT: ${vLLM_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
LLM_MODEL_ID: ${LLM_MODEL_ID}
restart: unless-stopped

networks:
default:
driver: bridge
8 changes: 8 additions & 0 deletions comps/llms/summarization/vllm/langchain/entrypoint.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
#!/usr/bin/env bash

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

pip --no-cache-dir install -r requirements-runtime.txt

python llm.py
118 changes: 118 additions & 0 deletions comps/llms/summarization/vllm/langchain/llm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import os

from fastapi.responses import StreamingResponse
from langchain.chains.summarize import load_summarize_chain
from langchain.docstore.document import Document
from langchain.prompts import PromptTemplate
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.llms import VLLMOpenAI

from comps import CustomLogger, GeneratedDoc, LLMParamsDoc, ServiceType, opea_microservices, register_microservice
from comps.cores.mega.utils import get_access_token

logger = CustomLogger("llm_docsum")
logflag = os.getenv("LOGFLAG", False)

# Environment variables
TOKEN_URL = os.getenv("TOKEN_URL")
CLIENTID = os.getenv("CLIENTID")
CLIENT_SECRET = os.getenv("CLIENT_SECRET")
MODEL_ID = os.getenv("LLM_MODEL_ID", None)

templ_en = """Write a concise summary of the following:
"{text}"
CONCISE SUMMARY:"""

templ_zh = """请简要概括以下内容:
"{text}"
概况:"""


def post_process_text(text: str):
if text == " ":
return "data: @#$\n\n"
if text == "\n":
return "data: <br/>\n\n"
if text.isspace():
return None
new_text = text.replace(" ", "@#$")
return f"data: {new_text}\n\n"


@register_microservice(
name="opea_service@llm_docsum",
service_type=ServiceType.LLM,
endpoint="/v1/chat/docsum",
host="0.0.0.0",
port=9000,
)
async def llm_generate(input: LLMParamsDoc):
if logflag:
logger.info(input)
if input.language in ["en", "auto"]:
templ = templ_en
elif input.language in ["zh"]:
templ = templ_zh
else:
raise NotImplementedError('Please specify the input language in "en", "zh", "auto"')

PROMPT = PromptTemplate.from_template(templ)

if logflag:
logger.info("After prompting:")
logger.info(PROMPT)

access_token = (
get_access_token(TOKEN_URL, CLIENTID, CLIENT_SECRET) if TOKEN_URL and CLIENTID and CLIENT_SECRET else None
)
headers = {}
if access_token:
headers = {"Authorization": f"Bearer {access_token}"}
llm_endpoint = os.getenv("vLLM_ENDPOINT", "http://localhost:8080")
model = input.model if input.model else os.getenv("LLM_MODEL_ID")
llm = VLLMOpenAI(
openai_api_key="EMPTY",
openai_api_base=llm_endpoint + "/v1",
model_name=model,
default_headers=headers,
max_tokens=input.max_tokens,
top_p=input.top_p,
streaming=input.streaming,
temperature=input.temperature,
presence_penalty=input.repetition_penalty,
)
llm_chain = load_summarize_chain(llm=llm, prompt=PROMPT)
texts = text_splitter.split_text(input.query)

# Create multiple documents
docs = [Document(page_content=t) for t in texts]

if input.streaming:

async def stream_generator():
from langserve.serialization import WellKnownLCSerializer

_serializer = WellKnownLCSerializer()
async for chunk in llm_chain.astream_log(docs):
data = _serializer.dumps({"ops": chunk.ops}).decode("utf-8")
if logflag:
logger.info(data)
yield f"data: {data}\n\n"
yield "data: [DONE]\n\n"

return StreamingResponse(stream_generator(), media_type="text/event-stream")
else:
response = await llm_chain.ainvoke(docs)
response = response["output_text"]
if logflag:
logger.info(response)
return GeneratedDoc(text=response, prompt=input.query)


if __name__ == "__main__":
# Split text
text_splitter = CharacterTextSplitter()
opea_microservices["opea_service@llm_docsum"].start()
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
langserve
15 changes: 15 additions & 0 deletions comps/llms/summarization/vllm/langchain/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
docarray[full]
fastapi
huggingface_hub
langchain #==0.1.12
langchain-huggingface
langchain-openai
langchain_community
langchainhub
opentelemetry-api
opentelemetry-exporter-otlp
opentelemetry-sdk
prometheus-fastapi-instrumentator
shortuuid
transformers
uvicorn

0 comments on commit 0f25f26

Please sign in to comment.