-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add stable-diffusion-v1-5 example (#34)
## Type of Change example ## Description Add stable-diffusion-v1-5 example --------- Signed-off-by: Mengni Wang <[email protected]> Signed-off-by: Wang, Mengni <[email protected]>
- Loading branch information
1 parent
05bb58a
commit aabbf96
Showing
9 changed files
with
451 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
47 changes: 47 additions & 0 deletions
47
...ace_model/text_to_image/stable_diffusion_v1_5/quantization/ptq_static/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
Step-by-Step | ||
============ | ||
|
||
This example shows how to quantize the unet model of [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) with SmoothQuant and generate images with the quantized unet. | ||
|
||
# Prerequisite | ||
|
||
## 1. Environment | ||
```shell | ||
pip install -r requirements.txt | ||
``` | ||
> Note: Validated ONNX Runtime [Version](/docs/installation_guide.md#validated-software-environment). | ||
## 2. Prepare Model | ||
|
||
|
||
```bash | ||
git clone https://github.com/huggingface/diffusers.git | ||
cd diffusers/scripts | ||
python convert_stable_diffusion_checkpoint_to_onnx.py --model_path runwayml/stable-diffusion-v1-5 --output_path stable-diffusion | ||
``` | ||
|
||
# Run | ||
|
||
## 1. Quantization | ||
|
||
```bash | ||
bash run_quant.sh --input_model=/path/to/stable-diffusion \ # folder path of stable-diffusion | ||
--output_model=/path/to/save/unet_model \ # model path as *.onnx | ||
--alpha=0.7 # optional | ||
``` | ||
|
||
## 2. Benchmark | ||
|
||
```bash | ||
bash run_benchmark.sh --input_model=/path/to/stable-diffusion \ # folder path of stable-diffusion | ||
--quantized_unet_path=/path/to/quantized/unet.onnx \ # optional, run fp32 model if not provided | ||
--prompt="a photo of an astronaut riding a horse on mars" \ # optional | ||
--image_path=image.png # optional | ||
``` | ||
|
||
Benchmark will print the throughput data and save the generated image. | ||
Our test results with default parameters is (fp32 vs int8): | ||
<p float="left"> | ||
<img src="./imgs/fp32.png" width = "300" height = "300" alt="fp32" align=center /> | ||
<img src="./imgs/int8.png" width = "300" height = "300" alt="int8" align=center /> | ||
</p> |
Binary file added
BIN
+414 KB
...model/text_to_image/stable_diffusion_v1_5/quantization/ptq_static/imgs/fp32.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added
BIN
+420 KB
...model/text_to_image/stable_diffusion_v1_5/quantization/ptq_static/imgs/int8.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
263 changes: 263 additions & 0 deletions
263
...nlp/huggingface_model/text_to_image/stable_diffusion_v1_5/quantization/ptq_static/main.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,263 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint:disable=redefined-outer-name,logging-format-interpolation | ||
import argparse | ||
import inspect | ||
import logging | ||
import os | ||
import time | ||
from typing import List | ||
|
||
import numpy as np | ||
import onnx | ||
import onnxruntime as ort | ||
import torch | ||
from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline | ||
|
||
from onnx_neural_compressor import data_reader | ||
from onnx_neural_compressor.quantization import QuantType, config, quantize | ||
|
||
logging.basicConfig( | ||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.WARN | ||
) | ||
|
||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||
parser.add_argument( | ||
"--model_path", | ||
type=str, | ||
help="Folder path of ONNX Stable-diffusion model, it contains model_index.json and sub-model folders.", | ||
) | ||
parser.add_argument("--quantized_unet_path", type=str, default=None, help="Path of the quantized unet model.") | ||
parser.add_argument("--benchmark", action="store_true", default=False) | ||
parser.add_argument("--tune", action="store_true", default=False, help="whether quantize the model") | ||
parser.add_argument("--output_model", type=str, default=None, help="output model path") | ||
parser.add_argument("--image_path", type=str, default="image.png", help="generated image path") | ||
parser.add_argument( | ||
"--batch_size", | ||
default=1, | ||
type=int, | ||
) | ||
parser.add_argument("--prompt", type=str, default="a photo of an astronaut riding a horse on mars") | ||
parser.add_argument("--alpha", type=float, default=0.7) | ||
parser.add_argument("--seed", type=int, default=1234, help="random seed for generation") | ||
parser.add_argument("--provider", type=str, default="CPUExecutionProvider") | ||
args = parser.parse_args() | ||
|
||
ORT_TO_NP_TYPE = { | ||
"tensor(bool)": np.bool_, | ||
"tensor(int8)": np.int8, | ||
"tensor(uint8)": np.uint8, | ||
"tensor(int16)": np.int16, | ||
"tensor(uint16)": np.uint16, | ||
"tensor(int32)": np.int32, | ||
"tensor(uint32)": np.uint32, | ||
"tensor(int64)": np.int64, | ||
"tensor(uint64)": np.uint64, | ||
"tensor(float16)": np.float16, | ||
"tensor(float)": np.float32, | ||
"tensor(double)": np.float64, | ||
} | ||
|
||
np.random.seed(args.seed) | ||
|
||
|
||
def benchmark(model): | ||
generator = None if args.seed is None else np.random.RandomState(args.seed) | ||
|
||
pipe = OnnxStableDiffusionPipeline.from_pretrained(args.model_path, provider=args.provider) | ||
if args.quantized_unet_path is not None: | ||
unet = OnnxRuntimeModel(model=ort.InferenceSession(args.quantized_unet_path, providers=[args.provider])) | ||
pipe.unet = unet | ||
|
||
image = None | ||
|
||
tic = time.time() | ||
image = pipe(prompt=args.prompt, generator=generator).images[0] | ||
toc = time.time() | ||
|
||
if image is not None: | ||
image.save(args.image_path) | ||
print("Generated image is saved as " + args.image_path) | ||
|
||
print("\n", "-" * 10, "Summary:", "-" * 10) | ||
throughput = 1 / (toc - tic) | ||
print("Throughput: {} samples/s".format(throughput)) | ||
|
||
|
||
class DataReader(data_reader.CalibrationDataReader): | ||
|
||
def __init__(self, model_path, batch_size=1): | ||
self.encoded_list = [] | ||
self.batch_size = batch_size | ||
|
||
model = onnx.load(os.path.join(model_path, "unet/model.onnx"), load_external_data=False) | ||
inputs_names = [input.name for input in model.graph.input] | ||
|
||
generator = np.random | ||
pipe = OnnxStableDiffusionPipeline.from_pretrained(model_path, provider="CPUExecutionProvider") | ||
prompt = "A cat holding a sign that says hello world" | ||
self.batch_size = batch_size | ||
guidance_scale = 7.5 | ||
do_classifier_free_guidance = guidance_scale > 1.0 | ||
num_images_per_prompt = 1 | ||
negative_prompt_embeds = None | ||
negative_prompt = None | ||
callback = None | ||
eta = 0.0 | ||
latents = None | ||
prompt_embeds = None | ||
if prompt_embeds is None: | ||
# get prompt text embeddings | ||
text_inputs = pipe.tokenizer( | ||
prompt, | ||
padding="max_length", | ||
max_length=pipe.tokenizer.model_max_length, | ||
truncation=True, | ||
return_tensors="np", | ||
) | ||
text_input_ids = text_inputs.input_ids | ||
prompt_embeds = pipe.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] | ||
|
||
prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0) | ||
|
||
# get unconditional embeddings for classifier free guidance | ||
if do_classifier_free_guidance and negative_prompt_embeds is None: | ||
uncond_tokens: List[str] | ||
if negative_prompt is None: | ||
uncond_tokens = [""] * batch_size | ||
elif type(prompt) is not type(negative_prompt): | ||
raise TypeError( | ||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | ||
f" {type(prompt)}." | ||
) | ||
elif isinstance(negative_prompt, str): | ||
uncond_tokens = [negative_prompt] * batch_size | ||
elif batch_size != len(negative_prompt): | ||
raise ValueError( | ||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | ||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | ||
" the batch size of `prompt`." | ||
) | ||
else: | ||
uncond_tokens = negative_prompt | ||
|
||
max_length = prompt_embeds.shape[1] | ||
uncond_input = pipe.tokenizer( | ||
uncond_tokens, | ||
padding="max_length", | ||
max_length=max_length, | ||
truncation=True, | ||
return_tensors="np", | ||
) | ||
negative_prompt_embeds = pipe.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] | ||
|
||
if do_classifier_free_guidance: | ||
negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) | ||
|
||
# For classifier free guidance, we need to do two forward passes. | ||
# Here we concatenate the unconditional and text embeddings into a single batch | ||
# to avoid doing two forward passes | ||
prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) | ||
|
||
# get the initial random noise unless the user supplied it | ||
latents_dtype = prompt_embeds.dtype | ||
latents_shape = (batch_size * num_images_per_prompt, 4, 512 // 8, 512 // 8) | ||
if latents is None: | ||
latents = generator.randn(*latents_shape).astype(latents_dtype) | ||
elif latents.shape != latents_shape: | ||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | ||
|
||
# set timesteps | ||
pipe.scheduler.set_timesteps(50) | ||
|
||
latents = latents * np.float64(pipe.scheduler.init_noise_sigma) | ||
|
||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | ||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | ||
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | ||
# and should be between [0, 1] | ||
accepts_eta = "eta" in set(inspect.signature(pipe.scheduler.step).parameters.keys()) | ||
extra_step_kwargs = {} | ||
if accepts_eta: | ||
extra_step_kwargs["eta"] = eta | ||
|
||
timestep_dtype = next( | ||
(input.type for input in pipe.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" | ||
) | ||
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] | ||
for i, t in enumerate(pipe.scheduler.timesteps): | ||
# expand the latents if we are doing classifier free guidance | ||
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents | ||
latent_model_input = pipe.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) | ||
latent_model_input = latent_model_input.cpu().numpy() | ||
|
||
# predict the noise residual | ||
timestep = np.array([t], dtype=timestep_dtype) | ||
ort_input = {} | ||
for name, inp in zip(inputs_names, [latent_model_input, timestep, prompt_embeds]): | ||
ort_input[name] = inp | ||
self.encoded_list.append(ort_input) | ||
noise_pred = pipe.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds) | ||
noise_pred = noise_pred[0] | ||
|
||
# perform guidance | ||
if do_classifier_free_guidance: | ||
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) | ||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | ||
|
||
# compute the previous noisy sample x_t -> x_t-1 | ||
scheduler_output = pipe.scheduler.step( | ||
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs | ||
) | ||
latents = scheduler_output.prev_sample.numpy() | ||
|
||
# call the callback, if provided | ||
if callback is not None and i % 1 == 0: | ||
step_idx = i // getattr(pipe.scheduler, "order", 1) | ||
callback(step_idx, t, latents) | ||
|
||
self.iter_next = iter(self.encoded_list) | ||
|
||
def get_next(self): | ||
return next(self.iter_next, None) | ||
|
||
def rewind(self): | ||
self.iter_next = iter(self.encoded_list) | ||
|
||
|
||
if __name__ == "__main__": | ||
if args.benchmark: | ||
benchmark(args.model_path) | ||
|
||
if args.tune: | ||
data_reader = DataReader(args.model_path) | ||
cfg = config.StaticQuantConfig( | ||
data_reader, | ||
weight_type=QuantType.QInt8, | ||
activation_type=QuantType.QUInt8, | ||
op_types_to_quantize=["MatMul", "Gemm"], | ||
per_channel=True, | ||
extra_options={ | ||
"SmoothQuant": True, | ||
"SmoothQuantAlpha": args.alpha, | ||
"WeightSymmetric": True, | ||
"ActivationSymmetric": False, | ||
"OpTypesToExcludeOutputQuantization": ["MatMul", "Gemm"], | ||
}, | ||
) | ||
input_path = os.path.join(args.model_path, "unet/model.onnx") | ||
quantize(input_path, args.output_model, cfg, optimization_level=ort.GraphOptimizationLevel.ORT_ENABLE_EXTENDED) |
7 changes: 7 additions & 0 deletions
7
...ngface_model/text_to_image/stable_diffusion_v1_5/quantization/ptq_static/requirements.txt
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
torch | ||
diffusers | ||
onnx | ||
onnxruntime | ||
onnxruntime-extensions | ||
onnx_neural_compressor | ||
transformers==4.42.0 # restricted by model export |
Oops, something went wrong.