-
Notifications
You must be signed in to change notification settings - Fork 2.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Update default main net to nn-b1a57edbea57.nnue #5056
Closed
Closed
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Created by retraining the previous main net `nn-baff1edbea57.nnue` with: - some of the same options as before: ranger21, more WDL skipping - the addition of T80 nov+dec 2023 data - increasing loss by 15% when prediction is too high, up from 10% - use of torch.compile to speed up training by over 25% ```yaml experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28 training-dataset: # official-stockfish#4782 - /data/S6-514G-1ee1aba5ed.binpack - /data/test80-aug2023-2tb7p.v6.min.binpack - /data/test80-sep2023-2tb7p.binpack - /data/test80-oct2023-2tb7p.binpack - /data/test80-nov2023-2tb7p.binpack - /data/test80-dec2023-2tb7p.binpack early-fen-skipping: 28 start-from-engine-test-net: True nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile num-epochs: 1000 lr: 4.375e-4 gamma: 0.995 start-lambda: 1.0 end-lambda: 0.7 ``` Epoch 819 trained with the above config led to this PR. Use of torch.compile decorators in nnue-pytorch model.py was found to speed up training by at least 25% on Ampere gpus when using recent pytorch compiled with cuda 12: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch See recent main net PRs for more info on - ranger21 and more WDL skipping: official-stockfish#4942 - increasing loss when Q is too high: official-stockfish#4972 Training data can be found at: https://robotmoon.com/nnue-training-data/ Passed STC: https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52 LLR: 2.98 (-2.94,2.94) <0.00,2.00> Total: 78336 W: 20504 L: 20115 D: 37717 Ptnml(0-2): 317, 9225, 19721, 9562, 343 Passed LTC: https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9 LLR: 2.95 (-2.94,2.94) <0.50,2.50> Total: 41016 W: 10492 L: 10159 D: 20365 Ptnml(0-2): 22, 4533, 11071, 4854, 28 Bench: 1265463
Disservin
added
🚀 gainer
Gains elo
functional-change
to be merged
Will be merged shortly
labels
Feb 16, 2024
xu-shawn
pushed a commit
to xu-shawn/Stockfish
that referenced
this pull request
Feb 17, 2024
Created by retraining the previous main net `nn-baff1edbea57.nnue` with: - some of the same options as before: ranger21, more WDL skipping - the addition of T80 nov+dec 2023 data - increasing loss by 15% when prediction is too high, up from 10% - use of torch.compile to speed up training by over 25% ```yaml experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28 training-dataset: # official-stockfish#4782 - /data/S6-514G-1ee1aba5ed.binpack - /data/test80-aug2023-2tb7p.v6.min.binpack - /data/test80-sep2023-2tb7p.binpack - /data/test80-oct2023-2tb7p.binpack - /data/test80-nov2023-2tb7p.binpack - /data/test80-dec2023-2tb7p.binpack early-fen-skipping: 28 start-from-engine-test-net: True nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile num-epochs: 1000 lr: 4.375e-4 gamma: 0.995 start-lambda: 1.0 end-lambda: 0.7 ``` Epoch 819 trained with the above config led to this PR. Use of torch.compile decorators in nnue-pytorch model.py was found to speed up training by at least 25% on Ampere gpus when using recent pytorch compiled with cuda 12: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch See recent main net PRs for more info on - ranger21 and more WDL skipping: official-stockfish#4942 - increasing loss when Q is too high: official-stockfish#4972 Training data can be found at: https://robotmoon.com/nnue-training-data/ Passed STC: https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52 LLR: 2.98 (-2.94,2.94) <0.00,2.00> Total: 78336 W: 20504 L: 20115 D: 37717 Ptnml(0-2): 317, 9225, 19721, 9562, 343 Passed LTC: https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9 LLR: 2.95 (-2.94,2.94) <0.50,2.50> Total: 41016 W: 10492 L: 10159 D: 20365 Ptnml(0-2): 22, 4533, 11071, 4854, 28 closes official-stockfish#5056 Bench: 1351997
xu-shawn
pushed a commit
to xu-shawn/Stockfish
that referenced
this pull request
Feb 19, 2024
Created by retraining the previous main net `nn-baff1edbea57.nnue` with: - some of the same options as before: ranger21, more WDL skipping - the addition of T80 nov+dec 2023 data - increasing loss by 15% when prediction is too high, up from 10% - use of torch.compile to speed up training by over 25% ```yaml experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28 training-dataset: # official-stockfish#4782 - /data/S6-514G-1ee1aba5ed.binpack - /data/test80-aug2023-2tb7p.v6.min.binpack - /data/test80-sep2023-2tb7p.binpack - /data/test80-oct2023-2tb7p.binpack - /data/test80-nov2023-2tb7p.binpack - /data/test80-dec2023-2tb7p.binpack early-fen-skipping: 28 start-from-engine-test-net: True nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile num-epochs: 1000 lr: 4.375e-4 gamma: 0.995 start-lambda: 1.0 end-lambda: 0.7 ``` Epoch 819 trained with the above config led to this PR. Use of torch.compile decorators in nnue-pytorch model.py was found to speed up training by at least 25% on Ampere gpus when using recent pytorch compiled with cuda 12: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch See recent main net PRs for more info on - ranger21 and more WDL skipping: official-stockfish#4942 - increasing loss when Q is too high: official-stockfish#4972 Training data can be found at: https://robotmoon.com/nnue-training-data/ Passed STC: https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52 LLR: 2.98 (-2.94,2.94) <0.00,2.00> Total: 78336 W: 20504 L: 20115 D: 37717 Ptnml(0-2): 317, 9225, 19721, 9562, 343 Passed LTC: https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9 LLR: 2.95 (-2.94,2.94) <0.50,2.50> Total: 41016 W: 10492 L: 10159 D: 20365 Ptnml(0-2): 22, 4533, 11071, 4854, 28 closes official-stockfish#5056 Bench: 1351997
xu-shawn
pushed a commit
to xu-shawn/Stockfish
that referenced
this pull request
Feb 19, 2024
Created by retraining the previous main net `nn-baff1edbea57.nnue` with: - some of the same options as before: ranger21, more WDL skipping - the addition of T80 nov+dec 2023 data - increasing loss by 15% when prediction is too high, up from 10% - use of torch.compile to speed up training by over 25% ```yaml experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28 training-dataset: # official-stockfish#4782 - /data/S6-514G-1ee1aba5ed.binpack - /data/test80-aug2023-2tb7p.v6.min.binpack - /data/test80-sep2023-2tb7p.binpack - /data/test80-oct2023-2tb7p.binpack - /data/test80-nov2023-2tb7p.binpack - /data/test80-dec2023-2tb7p.binpack early-fen-skipping: 28 start-from-engine-test-net: True nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile num-epochs: 1000 lr: 4.375e-4 gamma: 0.995 start-lambda: 1.0 end-lambda: 0.7 ``` Epoch 819 trained with the above config led to this PR. Use of torch.compile decorators in nnue-pytorch model.py was found to speed up training by at least 25% on Ampere gpus when using recent pytorch compiled with cuda 12: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch See recent main net PRs for more info on - ranger21 and more WDL skipping: official-stockfish#4942 - increasing loss when Q is too high: official-stockfish#4972 Training data can be found at: https://robotmoon.com/nnue-training-data/ Passed STC: https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52 LLR: 2.98 (-2.94,2.94) <0.00,2.00> Total: 78336 W: 20504 L: 20115 D: 37717 Ptnml(0-2): 317, 9225, 19721, 9562, 343 Passed LTC: https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9 LLR: 2.95 (-2.94,2.94) <0.50,2.50> Total: 41016 W: 10492 L: 10159 D: 20365 Ptnml(0-2): 22, 4533, 11071, 4854, 28 closes official-stockfish#5056 Bench: 1351997
xu-shawn
pushed a commit
to xu-shawn/Stockfish
that referenced
this pull request
Feb 19, 2024
Created by retraining the previous main net `nn-baff1edbea57.nnue` with: - some of the same options as before: ranger21, more WDL skipping - the addition of T80 nov+dec 2023 data - increasing loss by 15% when prediction is too high, up from 10% - use of torch.compile to speed up training by over 25% ```yaml experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28 training-dataset: # official-stockfish#4782 - /data/S6-514G-1ee1aba5ed.binpack - /data/test80-aug2023-2tb7p.v6.min.binpack - /data/test80-sep2023-2tb7p.binpack - /data/test80-oct2023-2tb7p.binpack - /data/test80-nov2023-2tb7p.binpack - /data/test80-dec2023-2tb7p.binpack early-fen-skipping: 28 start-from-engine-test-net: True nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile num-epochs: 1000 lr: 4.375e-4 gamma: 0.995 start-lambda: 1.0 end-lambda: 0.7 ``` Epoch 819 trained with the above config led to this PR. Use of torch.compile decorators in nnue-pytorch model.py was found to speed up training by at least 25% on Ampere gpus when using recent pytorch compiled with cuda 12: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch See recent main net PRs for more info on - ranger21 and more WDL skipping: official-stockfish#4942 - increasing loss when Q is too high: official-stockfish#4972 Training data can be found at: https://robotmoon.com/nnue-training-data/ Passed STC: https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52 LLR: 2.98 (-2.94,2.94) <0.00,2.00> Total: 78336 W: 20504 L: 20115 D: 37717 Ptnml(0-2): 317, 9225, 19721, 9562, 343 Passed LTC: https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9 LLR: 2.95 (-2.94,2.94) <0.50,2.50> Total: 41016 W: 10492 L: 10159 D: 20365 Ptnml(0-2): 22, 4533, 11071, 4854, 28 closes official-stockfish#5056 Bench: 1351997
TierynnB
pushed a commit
to TierynnB/Stockfish
that referenced
this pull request
Feb 22, 2024
Created by retraining the previous main net `nn-baff1edbea57.nnue` with: - some of the same options as before: ranger21, more WDL skipping - the addition of T80 nov+dec 2023 data - increasing loss by 15% when prediction is too high, up from 10% - use of torch.compile to speed up training by over 25% ```yaml experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28 training-dataset: # official-stockfish#4782 - /data/S6-514G-1ee1aba5ed.binpack - /data/test80-aug2023-2tb7p.v6.min.binpack - /data/test80-sep2023-2tb7p.binpack - /data/test80-oct2023-2tb7p.binpack - /data/test80-nov2023-2tb7p.binpack - /data/test80-dec2023-2tb7p.binpack early-fen-skipping: 28 start-from-engine-test-net: True nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile num-epochs: 1000 lr: 4.375e-4 gamma: 0.995 start-lambda: 1.0 end-lambda: 0.7 ``` Epoch 819 trained with the above config led to this PR. Use of torch.compile decorators in nnue-pytorch model.py was found to speed up training by at least 25% on Ampere gpus when using recent pytorch compiled with cuda 12: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch See recent main net PRs for more info on - ranger21 and more WDL skipping: official-stockfish#4942 - increasing loss when Q is too high: official-stockfish#4972 Training data can be found at: https://robotmoon.com/nnue-training-data/ Passed STC: https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52 LLR: 2.98 (-2.94,2.94) <0.00,2.00> Total: 78336 W: 20504 L: 20115 D: 37717 Ptnml(0-2): 317, 9225, 19721, 9562, 343 Passed LTC: https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9 LLR: 2.95 (-2.94,2.94) <0.50,2.50> Total: 41016 W: 10492 L: 10159 D: 20365 Ptnml(0-2): 22, 4533, 11071, 4854, 28 closes official-stockfish#5056 Bench: 1351997
TierynnB
added a commit
to TierynnB/Stockfish
that referenced
this pull request
Feb 23, 2024
commit 524083a Merge: 8a0206f 4a5ba40 Author: Tierynn Byrnes <[email protected]> Date: Fri Feb 23 08:42:30 2024 +1000 Merge branch 'TM_Change_2' of https://github.com/TierynnB/Stockfish into TM_Change_2 commit 8a0206f Author: Tierynn Byrnes <[email protected]> Date: Mon Feb 19 07:13:26 2024 +1000 use current time instead of '1' for timeLeft formula. make timeLeft a double, timepoint seemed unecessary since it was always casting back to double anyway. fixed comments Squashed commits commit 4a5ba40 Merge: ce952bf 676a1d7 Author: Tierynn Byrnes <[email protected]> Date: Fri Feb 23 08:01:21 2024 +1000 Merge branch 'TM_Change_2' of https://github.com/TierynnB/Stockfish into TM_Change_2 commit ce952bf Author: cj5716 <[email protected]> Date: Tue Feb 13 17:46:37 2024 +0800 Simplify PV node reduction Reduce less on PV nodes even with an upperbound TT entry. Passed STC: https://tests.stockfishchess.org/tests/view/65cb3a861d8e83c78bfd0497 LLR: 2.96 (-2.94,2.94) <-1.75,0.25> Total: 118752 W: 30441 L: 30307 D: 58004 Ptnml(0-2): 476, 14179, 29921, 14335, 465 Passed LTC: https://tests.stockfishchess.org/tests/view/65cd3b951d8e83c78bfd2b0d LLR: 2.95 (-2.94,2.94) <-1.75,0.25> Total: 155058 W: 38549 L: 38464 D: 78045 Ptnml(0-2): 85, 17521, 42219, 17632, 72 closes official-stockfish#5057 Bench: 1303971 commit 4acf810 Author: Linmiao Xu <[email protected]> Date: Tue Feb 6 11:21:15 2024 -0500 Update default main net to nn-b1a57edbea57.nnue Created by retraining the previous main net `nn-baff1edbea57.nnue` with: - some of the same options as before: ranger21, more WDL skipping - the addition of T80 nov+dec 2023 data - increasing loss by 15% when prediction is too high, up from 10% - use of torch.compile to speed up training by over 25% ```yaml experiment-name: 2560--S9-514G-T80-augtodec2023-more-wdl-skip-15p-more-loss-high-q-sk28 training-dataset: # official-stockfish#4782 - /data/S6-514G-1ee1aba5ed.binpack - /data/test80-aug2023-2tb7p.v6.min.binpack - /data/test80-sep2023-2tb7p.binpack - /data/test80-oct2023-2tb7p.binpack - /data/test80-nov2023-2tb7p.binpack - /data/test80-dec2023-2tb7p.binpack early-fen-skipping: 28 start-from-engine-test-net: True nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-torch-compile num-epochs: 1000 lr: 4.375e-4 gamma: 0.995 start-lambda: 1.0 end-lambda: 0.7 ``` Epoch 819 trained with the above config led to this PR. Use of torch.compile decorators in nnue-pytorch model.py was found to speed up training by at least 25% on Ampere gpus when using recent pytorch compiled with cuda 12: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch See recent main net PRs for more info on - ranger21 and more WDL skipping: official-stockfish#4942 - increasing loss when Q is too high: official-stockfish#4972 Training data can be found at: https://robotmoon.com/nnue-training-data/ Passed STC: https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52 LLR: 2.98 (-2.94,2.94) <0.00,2.00> Total: 78336 W: 20504 L: 20115 D: 37717 Ptnml(0-2): 317, 9225, 19721, 9562, 343 Passed LTC: https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9 LLR: 2.95 (-2.94,2.94) <0.50,2.50> Total: 41016 W: 10492 L: 10159 D: 20365 Ptnml(0-2): 22, 4533, 11071, 4854, 28 closes official-stockfish#5056 Bench: 1351997 commit 40c6cdf Author: cj5716 <[email protected]> Date: Tue Feb 13 17:50:16 2024 +0800 Simplify TT PV reduction This also removes some incorrect fail-high logic. Passed STC: https://tests.stockfishchess.org/tests/view/65cb3b641d8e83c78bfd04a9 LLR: 2.94 (-2.94,2.94) <-1.75,0.25> Total: 87968 W: 22634 L: 22468 D: 42866 Ptnml(0-2): 315, 10436, 22323, 10588, 322 Passed LTC: https://tests.stockfishchess.org/tests/view/65cccee21d8e83c78bfd222c LLR: 2.95 (-2.94,2.94) <-1.75,0.25> Total: 70794 W: 17846 L: 17672 D: 35276 Ptnml(0-2): 44, 7980, 19189, 8126, 58 closes official-stockfish#5055 Bench: 1474424 commit 9299d01 Author: Gahtan Nahdi <[email protected]> Date: Sat Feb 10 03:51:05 2024 +0700 Remove penalty for quiet ttMove that fails low Passed STC non-reg: https://tests.stockfishchess.org/tests/view/65c691a7c865510db0286e6e LLR: 2.95 (-2.94,2.94) <-1.75,0.25> Total: 234336 W: 60258 L: 60255 D: 113823 Ptnml(0-2): 966, 28141, 58918, 28210, 933 Passed LTC non-reg: https://tests.stockfishchess.org/tests/view/65c8d0d31d8e83c78bfcd4a6 LLR: 2.95 (-2.94,2.94) <-1.75,0.25> Total: 235206 W: 59134 L: 59132 D: 116940 Ptnml(0-2): 135, 26908, 63517, 26906, 137 official-stockfish#5054 Bench: 1287996 commit 676a1d7 Merge: 7d0cd7b 3c3f88b Author: Tierynn Byrnes <[email protected]> Date: Fri Feb 23 07:58:38 2024 +1000 Merge branch 'TM_Change_2' of https://github.com/TierynnB/Stockfish into TM_Change_2 commit 7d0cd7b Author: Tierynn Byrnes <[email protected]> Date: Mon Feb 19 07:13:26 2024 +1000 parent 8b67b7e author Tierynn Byrnes <[email protected]> 1708290806 +1000 committer Tierynn Byrnes <[email protected]> 1708638981 +1000 use current time instead of '1' for timeLeft formula. make timeLeft a double, timepoint seemed unecessary since it was always casting back to double anyway. commit 3c3f88b Merge: 76c50a0 61e8083 Author: Tierynn Byrnes <[email protected]> Date: Fri Feb 23 07:54:46 2024 +1000 Merge branch 'TM_Change_2' of https://github.com/TierynnB/Stockfish into TM_Change_2 commit 76c50a0 Author: Tierynn Byrnes <[email protected]> Date: Mon Feb 19 07:13:26 2024 +1000 use current time instead of '1' for timeLeft formula. make timeLeft a double, timepoint seemed unecessary since it was always casting back to double anyway. fixed comments commit 61e8083 Merge: 5cf3f49 8afec41 Author: Tierynn Byrnes <[email protected]> Date: Thu Feb 22 19:44:21 2024 +1000 Merge branch 'TM_Change_2' of https://github.com/TierynnB/Stockfish into TM_Change_2 commit 5cf3f49 Author: Tierynn Byrnes <[email protected]> Date: Mon Feb 19 07:13:26 2024 +1000 use current time instead of '1' for timeLeft formula. make timeLeft a double, timepoint seemed unecessary since it was always casting back to double anyway. commit 8afec41 Author: Tierynn Byrnes <[email protected]> Date: Mon Feb 19 07:50:30 2024 +1000 fixed comments commit de4a3c4 Author: Tierynn Byrnes <[email protected]> Date: Mon Feb 19 07:32:09 2024 +1000 make timeLeft a double, timepoint seemed unecessary since it was always casting back to double anyway. commit e1f6b87 Merge: 8b67b7e fc41f64 Author: Lemmy <[email protected]> Date: Mon Feb 19 07:14:27 2024 +1000 Merge branch 'official-stockfish:master' into TM_Change_2 commit 8b67b7e Author: Tierynn Byrnes <[email protected]> Date: Mon Feb 19 07:13:26 2024 +1000 use current time instead of '1' for timeLeft formula.
linrock
added a commit
to linrock/Stockfish
that referenced
this pull request
Mar 5, 2024
Created by retraining the previous main net `nn-b1a57edbea57.nnue` with: - some of the same options as before: - ranger21, more WDL skipping, 15% more loss when Q is too high - removal of the huge 514G pre-interleaved binpack - removal of SF-generated dfrc data (dfrc99-16tb7p-filt-v2.min.binpack) - interleaving many binpacks at training time - training with some bestmove capture positions where SEE < 0 - increased usage of torch.compile to speed up training by up to 40% ```yaml experiment-name: 2560--S10-dfrc0-to-dec2023-skip-more-wdl-15p-more-loss-high-q-see-ge0-sk28 nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-skip-see-ge0-torch-compile-more start-from-engine-test-net: True early-fen-skipping: 28 training-dataset: # similar, not the exact same as: # official-stockfish#4635 - /data/S5-5af/leela96.v2.min.binpack - /data/S5-5af/test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack - /data/S5-5af/test77-2021-12-dec-16tb7p.v6-dd.min.binpack - /data/S5-5af/test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack - /data/S5-5af/test78-2022-06-to-09-juntosep-16tb7p.v6-dd.min.binpack - /data/S5-5af/test79-2022-04-apr-16tb7p.v6-dd.min.binpack - /data/S5-5af/test79-2022-05-may-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2022-06-jun-16tb7p.v6-dd.min.unmin.binpack - /data/S5-5af/test80-2022-07-jul-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2022-08-aug-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2022-09-sep-16tb7p.v6-dd.min.unmin.binpack - /data/S5-5af/test80-2022-10-oct-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2022-11-nov-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2023-01-jan-16tb7p.v6-sk20.min.binpack - /data/S5-5af/test80-2023-02-feb-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2023-03-mar-2tb7p.min.unmin.binpack - /data/S5-5af/test80-2023-04-apr-2tb7p.binpack - /data/S5-5af/test80-2023-05-may-2tb7p.min.dd.binpack # official-stockfish#4782 - /data/S6-1ee1aba5ed/test80-2023-06-jun-2tb7p.binpack - /data/S6-1ee1aba5ed/test80-2023-07-jul-2tb7p.min.binpack # official-stockfish#4972 - /data/S8-baff1edbea57/test80-2023-08-aug-2tb7p.v6.min.binpack - /data/S8-baff1edbea57/test80-2023-09-sep-2tb7p.binpack - /data/S8-baff1edbea57/test80-2023-10-oct-2tb7p.binpack # official-stockfish#5056 - /data/S9-b1a57edbea57/test80-2023-11-nov-2tb7p.binpack - /data/S9-b1a57edbea57/test80-2023-12-dec-2tb7p.binpack num-epochs: 800 lr: 4.375e-4 gamma: 0.995 start-lambda: 1.0 end-lambda: 0.7 ``` This particular net was reached at epoch 759. Use of more torch.compile decorators in nnue-pytorch model.py than in the previous main net training run sped up training by up to 40% on Tesla gpus when using recent pytorch compiled with cuda 12: https://github.com/linrock/nnue-tools/blob/7fb9831/Dockerfile Skipping positions with bestmove captures where static exchange evaluation is >= 0 is based on the implementation from Sopel's NNUE training & experimentation log: https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY Experiment 293 - only skip captures with see>=0 Positions with bestmove captures where score == 0 are always skipped for compatibility with minimized binpacks, since the original minimizer sets scores to 0 for slight improvements in compression. The trainer branch used was: https://github.com/linrock/nnue-pytorch/tree/r21-more-wdl-skip-15p-more-loss-high-q-skip-see-ge0-torch-compile-more Binpacks were renamed to be sorted chronologically by default when sorted by name. The binpack data are otherwise the same as binpacks with similar names in the prior naming convention. Training data can be found at: https://robotmoon.com/nnue-training-data/ Passed STC: https://tests.stockfishchess.org/tests/view/65e3ddd1f2ef6c733362ae5c LLR: 2.92 (-2.94,2.94) <0.00,2.00> Total: 149792 W: 39153 L: 38661 D: 71978 Ptnml(0-2): 675, 17586, 37905, 18032, 698 Passed LTC: https://tests.stockfishchess.org/tests/view/65e4d91c416ecd92c162a69b LLR: 2.94 (-2.94,2.94) <0.50,2.50> Total: 64416 W: 16517 L: 16135 D: 31764 Ptnml(0-2): 38, 7218, 17313, 7602, 37 Bench: 1536373
linrock
added a commit
to linrock/Stockfish
that referenced
this pull request
Mar 5, 2024
Created by retraining the previous main net `nn-b1a57edbea57.nnue` with: - some of the same options as before: - ranger21, more WDL skipping, 15% more loss when Q is too high - removal of the huge 514G pre-interleaved binpack - removal of SF-generated dfrc data (dfrc99-16tb7p-filt-v2.min.binpack) - interleaving many binpacks at training time - training with some bestmove capture positions where SEE < 0 - increased usage of torch.compile to speed up training by up to 40% ```yaml experiment-name: 2560--S10-dfrc0-to-dec2023-skip-more-wdl-15p-more-loss-high-q-see-ge0-sk28 nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-skip-see-ge0-torch-compile-more start-from-engine-test-net: True early-fen-skipping: 28 training-dataset: # similar, not the exact same as: # official-stockfish#4635 - /data/S5-5af/leela96.v2.min.binpack - /data/S5-5af/test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack - /data/S5-5af/test77-2021-12-dec-16tb7p.v6-dd.min.binpack - /data/S5-5af/test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack - /data/S5-5af/test78-2022-06-to-09-juntosep-16tb7p.v6-dd.min.binpack - /data/S5-5af/test79-2022-04-apr-16tb7p.v6-dd.min.binpack - /data/S5-5af/test79-2022-05-may-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2022-06-jun-16tb7p.v6-dd.min.unmin.binpack - /data/S5-5af/test80-2022-07-jul-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2022-08-aug-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2022-09-sep-16tb7p.v6-dd.min.unmin.binpack - /data/S5-5af/test80-2022-10-oct-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2022-11-nov-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2023-01-jan-16tb7p.v6-sk20.min.binpack - /data/S5-5af/test80-2023-02-feb-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2023-03-mar-2tb7p.min.unmin.binpack - /data/S5-5af/test80-2023-04-apr-2tb7p.binpack - /data/S5-5af/test80-2023-05-may-2tb7p.min.dd.binpack # official-stockfish#4782 - /data/S6-1ee1aba5ed/test80-2023-06-jun-2tb7p.binpack - /data/S6-1ee1aba5ed/test80-2023-07-jul-2tb7p.min.binpack # official-stockfish#4972 - /data/S8-baff1edbea57/test80-2023-08-aug-2tb7p.v6.min.binpack - /data/S8-baff1edbea57/test80-2023-09-sep-2tb7p.binpack - /data/S8-baff1edbea57/test80-2023-10-oct-2tb7p.binpack # official-stockfish#5056 - /data/S9-b1a57edbea57/test80-2023-11-nov-2tb7p.binpack - /data/S9-b1a57edbea57/test80-2023-12-dec-2tb7p.binpack num-epochs: 800 lr: 4.375e-4 gamma: 0.995 start-lambda: 1.0 end-lambda: 0.7 ``` This particular net was reached at epoch 759. Use of more torch.compile decorators in nnue-pytorch model.py than in the previous main net training run sped up training by up to 40% on Tesla gpus when using recent pytorch compiled with cuda 12: https://github.com/linrock/nnue-tools/blob/7fb9831/Dockerfile Skipping positions with bestmove captures where static exchange evaluation is >= 0 is based on the implementation from Sopel's NNUE training & experimentation log: https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY Experiment 293 - only skip captures with see>=0 Positions with bestmove captures where score == 0 are always skipped for compatibility with minimized binpacks, since the original minimizer sets scores to 0 for slight improvements in compression. The trainer branch used was: https://github.com/linrock/nnue-pytorch/tree/r21-more-wdl-skip-15p-more-loss-high-q-skip-see-ge0-torch-compile-more Binpacks were renamed to be sorted chronologically by default when sorted by name. The binpack data are otherwise the same as binpacks with similar names in the prior naming convention. Training data can be found at: https://robotmoon.com/nnue-training-data/ Passed STC: https://tests.stockfishchess.org/tests/view/65e3ddd1f2ef6c733362ae5c LLR: 2.92 (-2.94,2.94) <0.00,2.00> Total: 149792 W: 39153 L: 38661 D: 71978 Ptnml(0-2): 675, 17586, 37905, 18032, 698 Passed LTC: https://tests.stockfishchess.org/tests/view/65e4d91c416ecd92c162a69b LLR: 2.94 (-2.94,2.94) <0.50,2.50> Total: 64416 W: 16517 L: 16135 D: 31764 Ptnml(0-2): 38, 7218, 17313, 7602, 37 Bench: 1373183
Disservin
pushed a commit
that referenced
this pull request
Mar 7, 2024
Created by retraining the previous main net `nn-b1a57edbea57.nnue` with: - some of the same options as before: - ranger21, more WDL skipping, 15% more loss when Q is too high - removal of the huge 514G pre-interleaved binpack - removal of SF-generated dfrc data (dfrc99-16tb7p-filt-v2.min.binpack) - interleaving many binpacks at training time - training with some bestmove capture positions where SEE < 0 - increased usage of torch.compile to speed up training by up to 40% ```yaml experiment-name: 2560--S10-dfrc0-to-dec2023-skip-more-wdl-15p-more-loss-high-q-see-ge0-sk28 nnue-pytorch-branch: linrock/nnue-pytorch/r21-more-wdl-skip-15p-more-loss-high-q-skip-see-ge0-torch-compile-more start-from-engine-test-net: True early-fen-skipping: 28 training-dataset: # similar, not the exact same as: # #4635 - /data/S5-5af/leela96.v2.min.binpack - /data/S5-5af/test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack - /data/S5-5af/test77-2021-12-dec-16tb7p.v6-dd.min.binpack - /data/S5-5af/test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack - /data/S5-5af/test78-2022-06-to-09-juntosep-16tb7p.v6-dd.min.binpack - /data/S5-5af/test79-2022-04-apr-16tb7p.v6-dd.min.binpack - /data/S5-5af/test79-2022-05-may-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2022-06-jun-16tb7p.v6-dd.min.unmin.binpack - /data/S5-5af/test80-2022-07-jul-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2022-08-aug-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2022-09-sep-16tb7p.v6-dd.min.unmin.binpack - /data/S5-5af/test80-2022-10-oct-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2022-11-nov-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2023-01-jan-16tb7p.v6-sk20.min.binpack - /data/S5-5af/test80-2023-02-feb-16tb7p.v6-dd.min.binpack - /data/S5-5af/test80-2023-03-mar-2tb7p.min.unmin.binpack - /data/S5-5af/test80-2023-04-apr-2tb7p.binpack - /data/S5-5af/test80-2023-05-may-2tb7p.min.dd.binpack # #4782 - /data/S6-1ee1aba5ed/test80-2023-06-jun-2tb7p.binpack - /data/S6-1ee1aba5ed/test80-2023-07-jul-2tb7p.min.binpack # #4972 - /data/S8-baff1edbea57/test80-2023-08-aug-2tb7p.v6.min.binpack - /data/S8-baff1edbea57/test80-2023-09-sep-2tb7p.binpack - /data/S8-baff1edbea57/test80-2023-10-oct-2tb7p.binpack # #5056 - /data/S9-b1a57edbea57/test80-2023-11-nov-2tb7p.binpack - /data/S9-b1a57edbea57/test80-2023-12-dec-2tb7p.binpack num-epochs: 800 lr: 4.375e-4 gamma: 0.995 start-lambda: 1.0 end-lambda: 0.7 ``` This particular net was reached at epoch 759. Use of more torch.compile decorators in nnue-pytorch model.py than in the previous main net training run sped up training by up to 40% on Tesla gpus when using recent pytorch compiled with cuda 12: https://github.com/linrock/nnue-tools/blob/7fb9831/Dockerfile Skipping positions with bestmove captures where static exchange evaluation is >= 0 is based on the implementation from Sopel's NNUE training & experimentation log: https://docs.google.com/document/d/1gTlrr02qSNKiXNZ_SuO4-RjK4MXBiFlLE6jvNqqMkAY Experiment 293 - only skip captures with see>=0 Positions with bestmove captures where score == 0 are always skipped for compatibility with minimized binpacks, since the original minimizer sets scores to 0 for slight improvements in compression. The trainer branch used was: https://github.com/linrock/nnue-pytorch/tree/r21-more-wdl-skip-15p-more-loss-high-q-skip-see-ge0-torch-compile-more Binpacks were renamed to be sorted chronologically by default when sorted by name. The binpack data are otherwise the same as binpacks with similar names in the prior naming convention. Training data can be found at: https://robotmoon.com/nnue-training-data/ Passed STC: https://tests.stockfishchess.org/tests/view/65e3ddd1f2ef6c733362ae5c LLR: 2.92 (-2.94,2.94) <0.00,2.00> Total: 149792 W: 39153 L: 38661 D: 71978 Ptnml(0-2): 675, 17586, 37905, 18032, 698 Passed LTC: https://tests.stockfishchess.org/tests/view/65e4d91c416ecd92c162a69b LLR: 2.94 (-2.94,2.94) <0.50,2.50> Total: 64416 W: 16517 L: 16135 D: 31764 Ptnml(0-2): 38, 7218, 17313, 7602, 37 closes #5090 Bench: 1373183
linrock
added a commit
to linrock/Stockfish
that referenced
this pull request
May 17, 2024
Created by first retraining the spsa-tuned master net `nn-ae6a388e4a1a.nnue` with: - using v6-dd data without bestmove captures removed - addition of T80 mar2024 data - increasing loss by 20% when Q is too high - torch.compile changes for marginal training speed gains And then SPSA tuning weights of epoch 899 following methods described in: official-stockfish#5149 This net was reached at 92k out of 120k steps in this 70+0.7 th 7 SPSA tuning run: https://tests.stockfishchess.org/tests/view/66413b7df9f4e8fc783c9bbb Thanks to @Viren6 for suggesting usage of: - c value 4 for the weights - c value 128 for the biases Scripts for automating applying fishtest spsa params to exporting tuned .nnue are in: https://github.com/linrock/nnue-tools/tree/master/spsa Before spsa tuning, epoch 899 was nn-f85738aefa84.nnue https://tests.stockfishchess.org/tests/view/663e5c893a2f9702074bc167 After initially training with max-epoch 800, training was resumed with max-epoch 1000. ``` experiment-name: 3072--S11--more-data-v6-dd-t80-mar2024--see-ge0-20p-more-loss-high-q-sk28-l8 nnue-pytorch-branch: linrock/nnue-pytorch/3072-r21-skip-more-wdl-see-ge0-20p-more-loss-high-q-torch-compile-more start-from-engine-test-net: False start-from-model: /data/config/apr2024-3072/nn-ae6a388e4a1a.nnue early-fen-skipping: 28 training-dataset: /data/S11-mar2024/: - leela96.v2.min.binpack - test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack - test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack - test80-2022-06-jun-16tb7p.v6-dd.min.binpack - test80-2022-08-aug-16tb7p.v6-dd.min.binpack - test80-2022-09-sep-16tb7p.v6-dd.min.binpack - test80-2023-01-jan-16tb7p.v6-sk20.min.binpack - test80-2023-02-feb-16tb7p.v6-sk20.min.binpack - test80-2023-03-mar-2tb7p.v6-sk16.min.binpack - test80-2023-04-apr-2tb7p.v6-sk16.min.binpack - test80-2023-05-may-2tb7p.v6.min.binpack # official-stockfish#4782 - test80-2023-06-jun-2tb7p.binpack - test80-2023-07-jul-2tb7p.binpack # official-stockfish#4972 - test80-2023-08-aug-2tb7p.v6.min.binpack - test80-2023-09-sep-2tb7p.binpack - test80-2023-10-oct-2tb7p.binpack # S9 new data: official-stockfish#5056 - test80-2023-11-nov-2tb7p.binpack - test80-2023-12-dec-2tb7p.binpack # S10 new data: official-stockfish#5149 - test80-2024-01-jan-2tb7p.binpack - test80-2024-02-feb-2tb7p.binpack # S11 new data - test80-2024-03-mar-2tb7p.binpack /data/filt-v6-dd/: - test77-dec2021-16tb7p-filter-v6-dd.binpack - test78-juntosep2022-16tb7p-filter-v6-dd.binpack - test79-apr2022-16tb7p-filter-v6-dd.binpack - test79-may2022-16tb7p-filter-v6-dd.binpack - test80-jul2022-16tb7p-filter-v6-dd.binpack - test80-oct2022-16tb7p-filter-v6-dd.binpack - test80-nov2022-16tb7p-filter-v6-dd.binpack num-epochs: 1000 lr: 4.375e-4 gamma: 0.995 start-lambda: 0.8 end-lambda: 0.7 ``` Training data can be found at: https://robotmoon.com/nnue-training-data/ Local elo at 25k nodes per move: nn-epoch899.nnue : 4.6 +/- 1.4 Passed STC: https://tests.stockfishchess.org/tests/view/6645454893ce6da3e93b31ae LLR: 2.95 (-2.94,2.94) <0.00,2.00> Total: 95232 W: 24598 L: 24194 D: 46440 Ptnml(0-2): 294, 11215, 24180, 11647, 280 Passed LTC: https://tests.stockfishchess.org/tests/view/6645522d93ce6da3e93b31df LLR: 2.95 (-2.94,2.94) <0.50,2.50> Total: 320544 W: 81432 L: 80524 D: 158588 Ptnml(0-2): 164, 35659, 87696, 36611, 142 bench 1955748
linrock
added a commit
to linrock/Stockfish
that referenced
this pull request
May 17, 2024
Created by first retraining the spsa-tuned main net `nn-ae6a388e4a1a.nnue` with: - using v6-dd data without bestmove captures removed - addition of T80 mar2024 data - increasing loss by 20% when Q is too high - torch.compile changes for marginal training speed gains And then SPSA tuning weights of epoch 899 following methods described in: official-stockfish#5149 This net was reached at 92k out of 120k steps in this 70+0.7 th 7 SPSA tuning run: https://tests.stockfishchess.org/tests/view/66413b7df9f4e8fc783c9bbb Thanks to @Viren6 for suggesting usage of: - c value 4 for the weights - c value 128 for the biases Scripts for automating applying fishtest spsa params to exporting tuned .nnue are in: https://github.com/linrock/nnue-tools/tree/master/spsa Before spsa tuning, epoch 899 was nn-f85738aefa84.nnue https://tests.stockfishchess.org/tests/view/663e5c893a2f9702074bc167 After initially training with max-epoch 800, training was resumed with max-epoch 1000. ``` experiment-name: 3072--S11--more-data-v6-dd-t80-mar2024--see-ge0-20p-more-loss-high-q-sk28-l8 nnue-pytorch-branch: linrock/nnue-pytorch/3072-r21-skip-more-wdl-see-ge0-20p-more-loss-high-q-torch-compile-more start-from-engine-test-net: False start-from-model: /data/config/apr2024-3072/nn-ae6a388e4a1a.nnue early-fen-skipping: 28 training-dataset: /data/S11-mar2024/: - leela96.v2.min.binpack - test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack - test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack - test80-2022-06-jun-16tb7p.v6-dd.min.binpack - test80-2022-08-aug-16tb7p.v6-dd.min.binpack - test80-2022-09-sep-16tb7p.v6-dd.min.binpack - test80-2023-01-jan-16tb7p.v6-sk20.min.binpack - test80-2023-02-feb-16tb7p.v6-sk20.min.binpack - test80-2023-03-mar-2tb7p.v6-sk16.min.binpack - test80-2023-04-apr-2tb7p.v6-sk16.min.binpack - test80-2023-05-may-2tb7p.v6.min.binpack # official-stockfish#4782 - test80-2023-06-jun-2tb7p.binpack - test80-2023-07-jul-2tb7p.binpack # official-stockfish#4972 - test80-2023-08-aug-2tb7p.v6.min.binpack - test80-2023-09-sep-2tb7p.binpack - test80-2023-10-oct-2tb7p.binpack # S9 new data: official-stockfish#5056 - test80-2023-11-nov-2tb7p.binpack - test80-2023-12-dec-2tb7p.binpack # S10 new data: official-stockfish#5149 - test80-2024-01-jan-2tb7p.binpack - test80-2024-02-feb-2tb7p.binpack # S11 new data - test80-2024-03-mar-2tb7p.binpack /data/filt-v6-dd/: - test77-dec2021-16tb7p-filter-v6-dd.binpack - test78-juntosep2022-16tb7p-filter-v6-dd.binpack - test79-apr2022-16tb7p-filter-v6-dd.binpack - test79-may2022-16tb7p-filter-v6-dd.binpack - test80-jul2022-16tb7p-filter-v6-dd.binpack - test80-oct2022-16tb7p-filter-v6-dd.binpack - test80-nov2022-16tb7p-filter-v6-dd.binpack num-epochs: 1000 lr: 4.375e-4 gamma: 0.995 start-lambda: 0.8 end-lambda: 0.7 ``` Training data can be found at: https://robotmoon.com/nnue-training-data/ Local elo at 25k nodes per move: nn-epoch899.nnue : 4.6 +/- 1.4 Passed STC: https://tests.stockfishchess.org/tests/view/6645454893ce6da3e93b31ae LLR: 2.95 (-2.94,2.94) <0.00,2.00> Total: 95232 W: 24598 L: 24194 D: 46440 Ptnml(0-2): 294, 11215, 24180, 11647, 280 Passed LTC: https://tests.stockfishchess.org/tests/view/6645522d93ce6da3e93b31df LLR: 2.95 (-2.94,2.94) <0.50,2.50> Total: 320544 W: 81432 L: 80524 D: 158588 Ptnml(0-2): 164, 35659, 87696, 36611, 142 bench 1955748
linrock
added a commit
to linrock/Stockfish
that referenced
this pull request
May 17, 2024
Created by first retraining the spsa-tuned main net `nn-ae6a388e4a1a.nnue` with: - using v6-dd data without bestmove captures removed - addition of T80 mar2024 data - increasing loss by 20% when Q is too high - torch.compile changes for marginal training speed gains And then SPSA tuning weights of epoch 899 following methods described in: official-stockfish#5149 This net was reached at 92k out of 120k steps in this 70+0.7 th 7 SPSA tuning run: https://tests.stockfishchess.org/tests/view/66413b7df9f4e8fc783c9bbb Thanks to @Viren6 for suggesting usage of: - c value 4 for the weights - c value 128 for the biases Scripts for automating applying fishtest spsa params to exporting tuned .nnue are in: https://github.com/linrock/nnue-tools/tree/master/spsa Before spsa tuning, epoch 899 was nn-f85738aefa84.nnue https://tests.stockfishchess.org/tests/view/663e5c893a2f9702074bc167 After initially training with max-epoch 800, training was resumed with max-epoch 1000. ``` experiment-name: 3072--S11--more-data-v6-dd-t80-mar2024--see-ge0-20p-more-loss-high-q-sk28-l8 nnue-pytorch-branch: linrock/nnue-pytorch/3072-r21-skip-more-wdl-see-ge0-20p-more-loss-high-q-torch-compile-more start-from-engine-test-net: False start-from-model: /data/config/apr2024-3072/nn-ae6a388e4a1a.nnue early-fen-skipping: 28 training-dataset: /data/S11-mar2024/: - leela96.v2.min.binpack - test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack - test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack - test80-2022-06-jun-16tb7p.v6-dd.min.binpack - test80-2022-08-aug-16tb7p.v6-dd.min.binpack - test80-2022-09-sep-16tb7p.v6-dd.min.binpack - test80-2023-01-jan-16tb7p.v6-sk20.min.binpack - test80-2023-02-feb-16tb7p.v6-sk20.min.binpack - test80-2023-03-mar-2tb7p.v6-sk16.min.binpack - test80-2023-04-apr-2tb7p.v6-sk16.min.binpack - test80-2023-05-may-2tb7p.v6.min.binpack # official-stockfish#4782 - test80-2023-06-jun-2tb7p.binpack - test80-2023-07-jul-2tb7p.binpack # official-stockfish#4972 - test80-2023-08-aug-2tb7p.v6.min.binpack - test80-2023-09-sep-2tb7p.binpack - test80-2023-10-oct-2tb7p.binpack # S9 new data: official-stockfish#5056 - test80-2023-11-nov-2tb7p.binpack - test80-2023-12-dec-2tb7p.binpack # S10 new data: official-stockfish#5149 - test80-2024-01-jan-2tb7p.binpack - test80-2024-02-feb-2tb7p.binpack # S11 new data - test80-2024-03-mar-2tb7p.binpack /data/filt-v6-dd/: - test77-dec2021-16tb7p-filter-v6-dd.binpack - test78-juntosep2022-16tb7p-filter-v6-dd.binpack - test79-apr2022-16tb7p-filter-v6-dd.binpack - test79-may2022-16tb7p-filter-v6-dd.binpack - test80-jul2022-16tb7p-filter-v6-dd.binpack - test80-oct2022-16tb7p-filter-v6-dd.binpack - test80-nov2022-16tb7p-filter-v6-dd.binpack num-epochs: 1000 lr: 4.375e-4 gamma: 0.995 start-lambda: 0.8 end-lambda: 0.7 ``` Training data can be found at: https://robotmoon.com/nnue-training-data/ Local elo at 25k nodes per move: nn-epoch899.nnue : 4.6 +/- 1.4 Passed STC: https://tests.stockfishchess.org/tests/view/6645454893ce6da3e93b31ae LLR: 2.95 (-2.94,2.94) <0.00,2.00> Total: 95232 W: 24598 L: 24194 D: 46440 Ptnml(0-2): 294, 11215, 24180, 11647, 280 Passed LTC: https://tests.stockfishchess.org/tests/view/6645522d93ce6da3e93b31df LLR: 2.95 (-2.94,2.94) <0.50,2.50> Total: 320544 W: 81432 L: 80524 D: 158588 Ptnml(0-2): 164, 35659, 87696, 36611, 142 bench 1995552
vondele
pushed a commit
to vondele/Stockfish
that referenced
this pull request
May 18, 2024
Created by first retraining the spsa-tuned main net `nn-ae6a388e4a1a.nnue` with: - using v6-dd data without bestmove captures removed - addition of T80 mar2024 data - increasing loss by 20% when Q is too high - torch.compile changes for marginal training speed gains And then SPSA tuning weights of epoch 899 following methods described in: official-stockfish#5149 This net was reached at 92k out of 120k steps in this 70+0.7 th 7 SPSA tuning run: https://tests.stockfishchess.org/tests/view/66413b7df9f4e8fc783c9bbb Thanks to @Viren6 for suggesting usage of: - c value 4 for the weights - c value 128 for the biases Scripts for automating applying fishtest spsa params to exporting tuned .nnue are in: https://github.com/linrock/nnue-tools/tree/master/spsa Before spsa tuning, epoch 899 was nn-f85738aefa84.nnue https://tests.stockfishchess.org/tests/view/663e5c893a2f9702074bc167 After initially training with max-epoch 800, training was resumed with max-epoch 1000. ``` experiment-name: 3072--S11--more-data-v6-dd-t80-mar2024--see-ge0-20p-more-loss-high-q-sk28-l8 nnue-pytorch-branch: linrock/nnue-pytorch/3072-r21-skip-more-wdl-see-ge0-20p-more-loss-high-q-torch-compile-more start-from-engine-test-net: False start-from-model: /data/config/apr2024-3072/nn-ae6a388e4a1a.nnue early-fen-skipping: 28 training-dataset: /data/S11-mar2024/: - leela96.v2.min.binpack - test60-2021-11-12-novdec-12tb7p.v6-dd.min.binpack - test78-2022-01-to-05-jantomay-16tb7p.v6-dd.min.binpack - test80-2022-06-jun-16tb7p.v6-dd.min.binpack - test80-2022-08-aug-16tb7p.v6-dd.min.binpack - test80-2022-09-sep-16tb7p.v6-dd.min.binpack - test80-2023-01-jan-16tb7p.v6-sk20.min.binpack - test80-2023-02-feb-16tb7p.v6-sk20.min.binpack - test80-2023-03-mar-2tb7p.v6-sk16.min.binpack - test80-2023-04-apr-2tb7p.v6-sk16.min.binpack - test80-2023-05-may-2tb7p.v6.min.binpack # official-stockfish#4782 - test80-2023-06-jun-2tb7p.binpack - test80-2023-07-jul-2tb7p.binpack # official-stockfish#4972 - test80-2023-08-aug-2tb7p.v6.min.binpack - test80-2023-09-sep-2tb7p.binpack - test80-2023-10-oct-2tb7p.binpack # S9 new data: official-stockfish#5056 - test80-2023-11-nov-2tb7p.binpack - test80-2023-12-dec-2tb7p.binpack # S10 new data: official-stockfish#5149 - test80-2024-01-jan-2tb7p.binpack - test80-2024-02-feb-2tb7p.binpack # S11 new data - test80-2024-03-mar-2tb7p.binpack /data/filt-v6-dd/: - test77-dec2021-16tb7p-filter-v6-dd.binpack - test78-juntosep2022-16tb7p-filter-v6-dd.binpack - test79-apr2022-16tb7p-filter-v6-dd.binpack - test79-may2022-16tb7p-filter-v6-dd.binpack - test80-jul2022-16tb7p-filter-v6-dd.binpack - test80-oct2022-16tb7p-filter-v6-dd.binpack - test80-nov2022-16tb7p-filter-v6-dd.binpack num-epochs: 1000 lr: 4.375e-4 gamma: 0.995 start-lambda: 0.8 end-lambda: 0.7 ``` Training data can be found at: https://robotmoon.com/nnue-training-data/ Local elo at 25k nodes per move: nn-epoch899.nnue : 4.6 +/- 1.4 Passed STC: https://tests.stockfishchess.org/tests/view/6645454893ce6da3e93b31ae LLR: 2.95 (-2.94,2.94) <0.00,2.00> Total: 95232 W: 24598 L: 24194 D: 46440 Ptnml(0-2): 294, 11215, 24180, 11647, 280 Passed LTC: https://tests.stockfishchess.org/tests/view/6645522d93ce6da3e93b31df LLR: 2.95 (-2.94,2.94) <0.50,2.50> Total: 320544 W: 81432 L: 80524 D: 158588 Ptnml(0-2): 164, 35659, 87696, 36611, 142 closes official-stockfish#5254 bench 1995552
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Created by retraining the previous main net
nn-baff1edbea57.nnue
with:Epoch 819 trained with the above config led to this PR. Use of torch.compile decorators in nnue-pytorch model.py was found to speed up training by at least 25% on Ampere gpus when using recent pytorch compiled with cuda 12: https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch
See recent main net PRs for more info on
Training data can be found at:
https://robotmoon.com/nnue-training-data/
Passed STC:
https://tests.stockfishchess.org/tests/view/65cd76151d8e83c78bfd2f52
LLR: 2.98 (-2.94,2.94) <0.00,2.00>
Total: 78336 W: 20504 L: 20115 D: 37717
Ptnml(0-2): 317, 9225, 19721, 9562, 343
Passed LTC:
https://tests.stockfishchess.org/tests/view/65ce5be61d8e83c78bfd43e9
LLR: 2.95 (-2.94,2.94) <0.50,2.50>
Total: 41016 W: 10492 L: 10159 D: 20365
Ptnml(0-2): 22, 4533, 11071, 4854, 28
Bench: 1265463