Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use block sparse input for the first layer. #4612

Closed
wants to merge 6 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions AUTHORS
Original file line number Diff line number Diff line change
Expand Up @@ -159,6 +159,7 @@ Norman Schmidt (FireFather)
notruck
Ofek Shochat (OfekShochat, ghostway)
Ondrej Mosnáček (WOnder93)
Ondřej Mišina (AndrovT)
Oskar Werkelin Ahlin
Pablo Vazquez
Panthee
Expand Down
2 changes: 1 addition & 1 deletion src/evaluate.h
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ namespace Eval {
// The default net name MUST follow the format nn-[SHA256 first 12 digits].nnue
// for the build process (profile-build and fishtest) to work. Do not change the
// name of the macro, as it is used in the Makefile.
#define EvalFileDefaultName "nn-ea57bea57e32.nnue"
#define EvalFileDefaultName "nn-fdc1d0fe6455.nnue"

namespace NNUE {

Expand Down
286 changes: 286 additions & 0 deletions src/nnue/layers/affine_transform_sparse_input.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,286 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file)

Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/

// Definition of layer AffineTransformSparseInput of NNUE evaluation function

#ifndef NNUE_LAYERS_AFFINE_TRANSFORM_SPARSE_INPUT_H_INCLUDED
#define NNUE_LAYERS_AFFINE_TRANSFORM_SPARSE_INPUT_H_INCLUDED

#include <iostream>
#include <algorithm>
#include <array>
#include <type_traits>
#include "../nnue_common.h"
#include "affine_transform.h"
#include "simd.h"

/*
This file contains the definition for a fully connected layer (aka affine transform) with block sparse input.
*/

namespace Stockfish::Eval::NNUE::Layers {
#if defined(__GNUC__) // GCC, Clang, ICC

static inline IndexType lsb_(std::uint32_t b) {
assert(b);
return IndexType(__builtin_ctzl(b));
}

#elif defined(_MSC_VER) // MSVC

static inline IndexType lsb_(std::uint32_t b) {
assert(b);
unsigned long idx;
_BitScanForward(&idx, b);
return (IndexType) idx;
}

#else // Compiler is neither GCC nor MSVC compatible

#error "Compiler not supported."

#endif


#if defined(USE_SSSE3)
alignas(CacheLineSize) static inline const std::array<std::array<std::uint16_t, 8>, 256> lookup_indices = [](){
std::array<std::array<std::uint16_t, 8>, 256> v{};
for (int i = 0; i < 256; ++i)
{
int j = i;
int k = 0;
while(j)
{
const IndexType lsbIndex = lsb_(std::uint32_t(j));
j &= j - 1;
v[i][k] = lsbIndex;
++k;
}
}
return v;
}();
alignas(CacheLineSize) static inline const std::array<unsigned, 256> lookup_count = [](){
std::array<unsigned, 256> v;
for (int i = 0; i < 256; ++i)
{
int j = i;
int k = 0;
while(j)
{
j &= j - 1;
++k;
}
v[i] = k;
}
return v;
}();

// Find indices of nonzero numbers in an int32_t array
template<const IndexType InputDimensions>
void find_nnz(const std::int32_t* input, std::uint16_t* out, IndexType& count_out) {
#if defined (USE_AVX512)
using vec_t = __m512i;
#define vec_nnz(a) _mm512_cmpgt_epi32_mask(a, _mm512_setzero_si512())
#elif defined (USE_AVX2)
using vec_t = __m256i;
#define vec_nnz(a) _mm256_movemask_ps((__m256)_mm256_cmpgt_epi32(a, _mm256_setzero_si256()))
#elif defined (USE_SSSE3)
using vec_t = __m128i;
#define vec_nnz(a) _mm_movemask_ps((__m128)_mm_cmpgt_epi32(a, _mm_setzero_si128()))
#endif
constexpr IndexType InputSimdWidth = sizeof(vec_t) / sizeof(std::int32_t);
// Inputs are processed InputSimdWidth at a time and outputs are processed 8 at a time so we process in chunks of max(InputSimdWidth, 8)
constexpr IndexType ChunkSize = std::max<IndexType>(InputSimdWidth, 8);
constexpr IndexType NumChunks = InputDimensions / ChunkSize;
constexpr IndexType InputsPerChunk = ChunkSize / InputSimdWidth;
constexpr IndexType OutputsPerChunk = ChunkSize / 8;

const auto inputVector = reinterpret_cast<const vec_t*>(input);
IndexType count = 0;
__m128i base = _mm_set1_epi16(0);
__m128i increment = _mm_set1_epi16(8);
for (IndexType i = 0; i < NumChunks; ++i)
{
// bitmask of nonzero values in this chunk
unsigned nnz = 0;
for (IndexType j = 0; j < InputsPerChunk; ++j)
{
const vec_t inputChunk = inputVector[i * InputsPerChunk + j];
nnz |= (unsigned)vec_nnz(inputChunk) << (j * InputSimdWidth);
}
for (IndexType j = 0; j < OutputsPerChunk; ++j)
{
const auto lookup = (nnz >> (j * 8)) & 0xFF;
const auto offsets = _mm_loadu_si128(reinterpret_cast<const __m128i*>(&lookup_indices[lookup]));
_mm_storeu_si128(reinterpret_cast<__m128i*>(out + count), _mm_add_epi16(base, offsets));
count += lookup_count[lookup];
base = _mm_add_epi16(base, increment);
}
}
count_out = count;
}
# undef vec_nnz
#endif

// Sparse input implementation
template <IndexType InDims, IndexType OutDims>
class AffineTransformSparseInput {
public:
// Input/output type
// Input/output type
using InputType = std::uint8_t;
using OutputType = std::int32_t;

// Number of input/output dimensions
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = OutDims;

static_assert(OutputDimensions % 16 == 0, "Only implemented for OutputDimensions divisible by 16.");

static constexpr IndexType PaddedInputDimensions =
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple<IndexType>(OutputDimensions, MaxSimdWidth);

#if defined (USE_SSSE3)
static constexpr IndexType ChunkSize = 4;
#else
static constexpr IndexType ChunkSize = 1;
#endif

using OutputBuffer = OutputType[PaddedOutputDimensions];

// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= prevHash >> 1;
hashValue ^= prevHash << 31;
return hashValue;
}

static IndexType get_weight_index_scrambled(IndexType i)
{
return
(i / ChunkSize) % (PaddedInputDimensions / ChunkSize) * OutputDimensions * ChunkSize +
i / PaddedInputDimensions * ChunkSize +
i % ChunkSize;
}

static IndexType get_weight_index(IndexType i)
{
#if defined (USE_SSSE3)
return get_weight_index_scrambled(i);
#else
return i;
#endif
}

// Read network parameters
bool read_parameters(std::istream& stream) {
read_little_endian<BiasType>(stream, biases, OutputDimensions);
for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
weights[get_weight_index(i)] = read_little_endian<WeightType>(stream);

return !stream.fail();
}

// Write network parameters
bool write_parameters(std::ostream& stream) const {
write_little_endian<BiasType>(stream, biases, OutputDimensions);

for (IndexType i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
write_little_endian<WeightType>(stream, weights[get_weight_index(i)]);

return !stream.fail();
}
// Forward propagation
const OutputType* propagate(
const InputType* input, OutputType* output) const {

#if defined (USE_SSSE3)
#if defined (USE_AVX512)
using vec_t = __m512i;
#define vec_setzero _mm512_setzero_si512
#define vec_set_32 _mm512_set1_epi32
#define vec_add_dpbusd_32 Simd::m512_add_dpbusd_epi32
#elif defined (USE_AVX2)
using vec_t = __m256i;
#define vec_setzero _mm256_setzero_si256
#define vec_set_32 _mm256_set1_epi32
#define vec_add_dpbusd_32 Simd::m256_add_dpbusd_epi32
#elif defined (USE_SSSE3)
using vec_t = __m128i;
#define vec_setzero _mm_setzero_si128
#define vec_set_32 _mm_set1_epi32
#define vec_add_dpbusd_32 Simd::m128_add_dpbusd_epi32
#endif
static constexpr IndexType OutputSimdWidth = sizeof(vec_t) / sizeof(OutputType);

constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 8) / ChunkSize;
constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth;
std::uint16_t nnz[NumChunks];
IndexType count;

const auto input32 = reinterpret_cast<const std::int32_t*>(input);

// Find indices of nonzero 32bit blocks
find_nnz<NumChunks>(input32, nnz, count);

const vec_t* biasvec = reinterpret_cast<const vec_t*>(biases);
vec_t acc[NumRegs];
for (IndexType k = 0; k < NumRegs; ++k)
acc[k] = biasvec[k];

for (IndexType j = 0; j < count; ++j)
{
const auto i = nnz[j];
const vec_t in = vec_set_32(input32[i]);
const auto col = reinterpret_cast<const vec_t*>(&weights[i * OutputDimensions * ChunkSize]);
for (IndexType k = 0; k < NumRegs; ++k)
vec_add_dpbusd_32(acc[k], in, col[k]);
}

vec_t* outptr = reinterpret_cast<vec_t*>(output);
for (IndexType k = 0; k < NumRegs; ++k)
outptr[k] = acc[k];
# undef vec_setzero
# undef vec_set_32
# undef vec_add_dpbusd_32
#else
// Use dense implementation for the other architectures.
affine_transform_non_ssse3<
InputDimensions,
PaddedInputDimensions,
OutputDimensions>(output, weights, biases, input);
#endif

return output;
}

private:
using BiasType = OutputType;
using WeightType = std::int8_t;

alignas(CacheLineSize) BiasType biases[OutputDimensions];
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
};

} // namespace Stockfish::Eval::NNUE::Layers

#endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_SPARSE_INPUT_H_INCLUDED
3 changes: 2 additions & 1 deletion src/nnue/nnue_architecture.h
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@

#include "features/half_ka_v2_hm.h"

#include "layers/affine_transform_sparse_input.h"
#include "layers/affine_transform.h"
#include "layers/clipped_relu.h"
#include "layers/sqr_clipped_relu.h"
Expand All @@ -48,7 +49,7 @@ struct Network
static constexpr int FC_0_OUTPUTS = 15;
static constexpr int FC_1_OUTPUTS = 32;

Layers::AffineTransform<TransformedFeatureDimensions, FC_0_OUTPUTS + 1> fc_0;
Layers::AffineTransformSparseInput<TransformedFeatureDimensions, FC_0_OUTPUTS + 1> fc_0;
Layers::SqrClippedReLU<FC_0_OUTPUTS + 1> ac_sqr_0;
Layers::ClippedReLU<FC_0_OUTPUTS + 1> ac_0;
Layers::AffineTransform<FC_0_OUTPUTS * 2, FC_1_OUTPUTS> fc_1;
Expand Down