Skip to content

Commit

Permalink
Update architecture to "SFNNv4". Update network to nn-6877cd24400e.nnue.
Browse files Browse the repository at this point in the history
Architecture:

The diagram of the "SFNNv4" architecture:
https://user-images.githubusercontent.com/8037982/153455685-cbe3a038-e158-4481-844d-9d5fccf5c33a.png

The most important architectural changes are the following:

* 1024x2 [activated] neurons are pairwise, elementwise multiplied (not quite pairwise due to implementation details, see diagram), which introduces a non-linearity that exhibits similar benefits to previously tested sigmoid activation (quantmoid4), while being slightly faster.
* The following layer has therefore 2x less inputs, which we compensate by having 2 more outputs. It is possible that reducing the number of outputs might be beneficial (as we had it as low as 8 before). The layer is now 1024->16.
* The 16 outputs are split into 15 and 1. The 1-wide output is added to the network output (after some necessary scaling due to quantization differences). The 15-wide is activated and follows the usual path through a set of linear layers. The additional 1-wide output is at least neutral, but has shown a slightly positive trend in training compared to networks without it (all 16 outputs through the usual path), and allows possibly an additional stage of lazy evaluation to be introduced in the future.

Additionally, the inference code was rewritten and no longer uses a recursive implementation. This was necessitated by the splitting of the 16-wide intermediate result into two, which was impossible to do with the old implementation with ugly hacks. This is hopefully overall for the better.

First session:

The first session was training a network from scratch (random initialization). The exact trainer used was slightly different (older) from the one used in the second session, but it should not have a measurable effect. The purpose of this session is to establish a strong network base for the second session. Small deviations in strength do not harm the learnability in the second session.

The training was done using the following command:

python3 train.py \
    /home/sopel/nnue/nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \
    /home/sopel/nnue/nnue-pytorch-training/data/nodes5000pv2_UHO.binpack \
    --gpus "$3," \
    --threads 4 \
    --num-workers 4 \
    --batch-size 16384 \
    --progress_bar_refresh_rate 20 \
    --random-fen-skipping 3 \
    --features=HalfKAv2_hm^ \
    --lambda=1.0 \
    --gamma=0.992 \
    --lr=8.75e-4 \
    --max_epochs=400 \
    --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$2

Every 20th net was saved and its playing strength measured against some baseline at 25k nodes per move with pure NNUE evaluation (modified binary). The exact setup is not important as long as it's consistent. The purpose is to sift good candidates from bad ones.

The dataset can be found https://drive.google.com/file/d/1UQdZN_LWQ265spwTBwDKo0t1WjSJKvWY/view

Second session:

The second training session was done starting from the best network (as determined by strength testing) from the first session. It is important that it's resumed from a .pt model and NOT a .ckpt model. The conversion can be performed directly using serialize.py

The LR schedule was modified to use gamma=0.995 instead of gamma=0.992 and LR=4.375e-4 instead of LR=8.75e-4 to flatten the LR curve and allow for longer training. The training was then running for 800 epochs instead of 400 (though it's possibly mostly noise after around epoch 600).

The training was done using the following command:

The training was done using the following command:

python3 train.py \
        /data/sopel/nnue/nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \
        /data/sopel/nnue/nnue-pytorch-training/data/T60T70wIsRightFarseerT60T74T75T76.binpack \
        --gpus "$3," \
        --threads 4 \
        --num-workers 4 \
        --batch-size 16384 \
        --progress_bar_refresh_rate 20 \
        --random-fen-skipping 3 \
        --features=HalfKAv2_hm^ \
        --lambda=1.0 \
        --gamma=0.995 \
        --lr=4.375e-4 \
        --max_epochs=800 \
        --resume-from-model /data/sopel/nnue/nnue-pytorch-training/data/exp295/nn-epoch399.pt \
        --default_root_dir ../nnue-pytorch-training/experiment_$1/run_$run_id

In particular note that we now use lambda=1.0 instead of lambda=0.8 (previous nets), because tests show that WDL-skipping introduced by vondele performs better with lambda=1.0. Nets were being saved every 20th epoch. In total 16 runs were made with these settings and the best nets chosen according to playing strength at 25k nodes per move with pure NNUE evaluation - these are the 4 nets that have been put on fishtest.

The dataset can be found either at ftp://ftp.chessdb.cn/pub/sopel/data_sf/T60T70wIsRightFarseerT60T74T75T76.binpack in its entirety (download might be painfully slow because hosted in China) or can be assembled in the following way:

Get the https://github.com/official-stockfish/Stockfish/blob/5640ad48ae5881223b868362c1cbeb042947f7b4/script/interleave_binpacks.py script.
Download T60T70wIsRightFarseer.binpack https://drive.google.com/file/d/1_sQoWBl31WAxNXma2v45004CIVltytP8/view
Download farseerT74.binpack http://trainingdata.farseer.org/T74-May13-End.7z
Download farseerT75.binpack http://trainingdata.farseer.org/T75-June3rd-End.7z
Download farseerT76.binpack http://trainingdata.farseer.org/T76-Nov10th-End.7z
Run python3 interleave_binpacks.py T60T70wIsRightFarseer.binpack farseerT74.binpack farseerT75.binpack farseerT76.binpack T60T70wIsRightFarseerT60T74T75T76.binpack

Tests:

STC: https://tests.stockfishchess.org/tests/view/6203fb85d71106ed12a407b7
LLR: 2.94 (-2.94,2.94) <0.00,2.50>
Total: 16952 W: 4775 L: 4521 D: 7656
Ptnml(0-2): 133, 1818, 4318, 2076, 131

LTC: https://tests.stockfishchess.org/tests/view/62041e68d71106ed12a40e85
LLR: 2.94 (-2.94,2.94) <0.50,3.00>
Total: 14944 W: 4138 L: 3907 D: 6899
Ptnml(0-2): 21, 1499, 4202, 1728, 22

closes #3927

Bench: 4919707
  • Loading branch information
Sopel97 authored and vondele committed Feb 10, 2022
1 parent b0b3155 commit cb9c259
Show file tree
Hide file tree
Showing 7 changed files with 237 additions and 302 deletions.
2 changes: 1 addition & 1 deletion src/evaluate.h
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ namespace Eval {
// The default net name MUST follow the format nn-[SHA256 first 12 digits].nnue
// for the build process (profile-build and fishtest) to work. Do not change the
// name of the macro, as it is used in the Makefile.
#define EvalFileDefaultName "nn-ac07bd334b62.nnue"
#define EvalFileDefaultName "nn-6877cd24400e.nnue"

namespace NNUE {

Expand Down
17 changes: 3 additions & 14 deletions src/nnue/evaluate_nnue.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -148,22 +148,18 @@ namespace Stockfish::Eval::NNUE {
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformedFeaturesUnaligned[
FeatureTransformer::BufferSize + alignment / sizeof(TransformedFeatureType)];
char bufferUnaligned[Network::BufferSize + alignment];

auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
auto* buffer = align_ptr_up<alignment>(&bufferUnaligned[0]);
#else
alignas(alignment)
TransformedFeatureType transformedFeatures[FeatureTransformer::BufferSize];
alignas(alignment) char buffer[Network::BufferSize];
#endif

ASSERT_ALIGNED(transformedFeatures, alignment);
ASSERT_ALIGNED(buffer, alignment);

const std::size_t bucket = (pos.count<ALL_PIECES>() - 1) / 4;
const auto psqt = featureTransformer->transform(pos, transformedFeatures, bucket);
const auto positional = network[bucket]->propagate(transformedFeatures, buffer)[0];
const auto positional = network[bucket]->propagate(transformedFeatures);

// Give more value to positional evaluation when adjusted flag is set
if (adjusted)
Expand All @@ -190,27 +186,20 @@ namespace Stockfish::Eval::NNUE {
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
TransformedFeatureType transformedFeaturesUnaligned[
FeatureTransformer::BufferSize + alignment / sizeof(TransformedFeatureType)];
char bufferUnaligned[Network::BufferSize + alignment];

auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
auto* buffer = align_ptr_up<alignment>(&bufferUnaligned[0]);
#else
alignas(alignment)
TransformedFeatureType transformedFeatures[FeatureTransformer::BufferSize];
alignas(alignment) char buffer[Network::BufferSize];
#endif

ASSERT_ALIGNED(transformedFeatures, alignment);
ASSERT_ALIGNED(buffer, alignment);

NnueEvalTrace t{};
t.correctBucket = (pos.count<ALL_PIECES>() - 1) / 4;
for (std::size_t bucket = 0; bucket < LayerStacks; ++bucket) {
const auto psqt = featureTransformer->transform(pos, transformedFeatures, bucket);
const auto output = network[bucket]->propagate(transformedFeatures, buffer);

int materialist = psqt;
int positional = output[0];
const auto materialist = featureTransformer->transform(pos, transformedFeatures, bucket);
const auto positional = network[bucket]->propagate(transformedFeatures);

t.psqt[bucket] = static_cast<Value>( materialist / OutputScale );
t.positional[bucket] = static_cast<Value>( positional / OutputScale );
Expand Down
91 changes: 32 additions & 59 deletions src/nnue/layers/affine_transform.h
Original file line number Diff line number Diff line change
Expand Up @@ -63,19 +63,17 @@ namespace Stockfish::Eval::NNUE::Layers {
{
# if defined(USE_SSE2)
// At least a multiple of 16, with SSE2.
static_assert(PaddedInputDimensions % 16 == 0);
constexpr IndexType NumChunks = PaddedInputDimensions / 16;
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 16) / 16;
const __m128i Zeros = _mm_setzero_si128();
const auto inputVector = reinterpret_cast<const __m128i*>(input);

# elif defined(USE_MMX)
static_assert(InputDimensions % 8 == 0);
constexpr IndexType NumChunks = InputDimensions / 8;
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 8) / 8;
const __m64 Zeros = _mm_setzero_si64();
const auto inputVector = reinterpret_cast<const __m64*>(input);

# elif defined(USE_NEON)
constexpr IndexType NumChunks = (InputDimensions + 15) / 16;
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 16) / 16;
const auto inputVector = reinterpret_cast<const int8x8_t*>(input);
# endif

Expand Down Expand Up @@ -150,24 +148,27 @@ namespace Stockfish::Eval::NNUE::Layers {
}
#endif

template <typename PreviousLayer, IndexType OutDims, typename Enabled = void>
template <IndexType InDims, IndexType OutDims, typename Enabled = void>
class AffineTransform;

// A specialization for large inputs.
template <typename PreviousLayer, IndexType OutDims>
class AffineTransform<PreviousLayer, OutDims, std::enable_if_t<(PreviousLayer::OutputDimensions >= 2*64-1)>> {
template <IndexType InDims, IndexType OutDims>
class AffineTransform<InDims, OutDims, std::enable_if_t<(ceil_to_multiple<IndexType>(InDims, MaxSimdWidth) >= 2*64)>> {
public:
// Input/output type
using InputType = typename PreviousLayer::OutputType;
using InputType = std::uint8_t;
using OutputType = std::int32_t;
static_assert(std::is_same<InputType, std::uint8_t>::value, "");

// Number of input/output dimensions
static constexpr IndexType InputDimensions = PreviousLayer::OutputDimensions;
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = OutDims;

static constexpr IndexType PaddedInputDimensions =
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple<IndexType>(OutputDimensions, MaxSimdWidth);

using OutputBuffer = OutputType[PaddedOutputDimensions];

static_assert(PaddedInputDimensions >= 128, "Something went wrong. This specialization should not have been chosen.");

Expand Down Expand Up @@ -202,20 +203,12 @@ namespace Stockfish::Eval::NNUE::Layers {

static_assert(OutputDimensions % NumOutputRegs == 0);

// Size of forward propagation buffer used in this layer
static constexpr std::size_t SelfBufferSize =
ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize);

// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t BufferSize =
PreviousLayer::BufferSize + SelfBufferSize;

// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value() {
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= PreviousLayer::get_hash_value() >> 1;
hashValue ^= PreviousLayer::get_hash_value() << 31;
hashValue ^= prevHash >> 1;
hashValue ^= prevHash << 31;
return hashValue;
}

Expand All @@ -242,7 +235,6 @@ namespace Stockfish::Eval::NNUE::Layers {

// Read network parameters
bool read_parameters(std::istream& stream) {
if (!previousLayer.read_parameters(stream)) return false;
for (std::size_t i = 0; i < OutputDimensions; ++i)
biases[i] = read_little_endian<BiasType>(stream);

Expand All @@ -254,7 +246,6 @@ namespace Stockfish::Eval::NNUE::Layers {

// Write network parameters
bool write_parameters(std::ostream& stream) const {
if (!previousLayer.write_parameters(stream)) return false;
for (std::size_t i = 0; i < OutputDimensions; ++i)
write_little_endian<BiasType>(stream, biases[i]);

Expand All @@ -266,10 +257,7 @@ namespace Stockfish::Eval::NNUE::Layers {

// Forward propagation
const OutputType* propagate(
const TransformedFeatureType* transformedFeatures, char* buffer) const {
const auto input = previousLayer.propagate(
transformedFeatures, buffer + SelfBufferSize);
OutputType* output = reinterpret_cast<OutputType*>(buffer);
const InputType* input, OutputType* output) const {

#if defined (USE_AVX512)
using acc_vec_t = __m512i;
Expand Down Expand Up @@ -312,7 +300,6 @@ namespace Stockfish::Eval::NNUE::Layers {
#if defined (USE_SSSE3) || defined (USE_NEON)
const in_vec_t* invec = reinterpret_cast<const in_vec_t*>(input);


// Perform accumulation to registers for each big block
for (IndexType bigBlock = 0; bigBlock < NumBigBlocks; ++bigBlock)
{
Expand Down Expand Up @@ -377,26 +364,28 @@ namespace Stockfish::Eval::NNUE::Layers {
using BiasType = OutputType;
using WeightType = std::int8_t;

PreviousLayer previousLayer;

alignas(CacheLineSize) BiasType biases[OutputDimensions];
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
};

template <typename PreviousLayer, IndexType OutDims>
class AffineTransform<PreviousLayer, OutDims, std::enable_if_t<(PreviousLayer::OutputDimensions < 2*64-1)>> {
template <IndexType InDims, IndexType OutDims>
class AffineTransform<InDims, OutDims, std::enable_if_t<(ceil_to_multiple<IndexType>(InDims, MaxSimdWidth) < 2*64)>> {
public:
// Input/output type
using InputType = typename PreviousLayer::OutputType;
// Input/output type
using InputType = std::uint8_t;
using OutputType = std::int32_t;
static_assert(std::is_same<InputType, std::uint8_t>::value, "");

// Number of input/output dimensions
static constexpr IndexType InputDimensions =
PreviousLayer::OutputDimensions;
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = OutDims;

static constexpr IndexType PaddedInputDimensions =
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple<IndexType>(OutputDimensions, MaxSimdWidth);

using OutputBuffer = OutputType[PaddedOutputDimensions];

static_assert(PaddedInputDimensions < 128, "Something went wrong. This specialization should not have been chosen.");

Expand All @@ -405,20 +394,12 @@ namespace Stockfish::Eval::NNUE::Layers {
static constexpr const IndexType InputSimdWidth = SimdWidth;
#endif

// Size of forward propagation buffer used in this layer
static constexpr std::size_t SelfBufferSize =
ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize);

// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t BufferSize =
PreviousLayer::BufferSize + SelfBufferSize;

// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value() {
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= PreviousLayer::get_hash_value() >> 1;
hashValue ^= PreviousLayer::get_hash_value() << 31;
hashValue ^= prevHash >> 1;
hashValue ^= prevHash << 31;
return hashValue;
}

Expand All @@ -441,7 +422,6 @@ namespace Stockfish::Eval::NNUE::Layers {

// Read network parameters
bool read_parameters(std::istream& stream) {
if (!previousLayer.read_parameters(stream)) return false;
for (std::size_t i = 0; i < OutputDimensions; ++i)
biases[i] = read_little_endian<BiasType>(stream);
for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
Expand All @@ -452,7 +432,6 @@ namespace Stockfish::Eval::NNUE::Layers {

// Write network parameters
bool write_parameters(std::ostream& stream) const {
if (!previousLayer.write_parameters(stream)) return false;
for (std::size_t i = 0; i < OutputDimensions; ++i)
write_little_endian<BiasType>(stream, biases[i]);

Expand All @@ -463,10 +442,7 @@ namespace Stockfish::Eval::NNUE::Layers {
}
// Forward propagation
const OutputType* propagate(
const TransformedFeatureType* transformedFeatures, char* buffer) const {
const auto input = previousLayer.propagate(
transformedFeatures, buffer + SelfBufferSize);
const auto output = reinterpret_cast<OutputType*>(buffer);
const InputType* input, OutputType* output) const {

#if defined (USE_AVX2)
using vec_t = __m256i;
Expand All @@ -491,12 +467,11 @@ namespace Stockfish::Eval::NNUE::Layers {
#if defined (USE_SSSE3)
const auto inputVector = reinterpret_cast<const vec_t*>(input);

static_assert(InputDimensions % 8 == 0);
static_assert(OutputDimensions % OutputSimdWidth == 0 || OutputDimensions == 1);

if constexpr (OutputDimensions % OutputSimdWidth == 0)
{
constexpr IndexType NumChunks = InputDimensions / 4;
constexpr IndexType NumChunks = ceil_to_multiple<IndexType>(InputDimensions, 8) / 4;
constexpr IndexType NumRegs = OutputDimensions / OutputSimdWidth;

const auto input32 = reinterpret_cast<const std::int32_t*>(input);
Expand Down Expand Up @@ -555,8 +530,6 @@ namespace Stockfish::Eval::NNUE::Layers {
using BiasType = OutputType;
using WeightType = std::int8_t;

PreviousLayer previousLayer;

alignas(CacheLineSize) BiasType biases[OutputDimensions];
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
};
Expand Down
35 changes: 11 additions & 24 deletions src/nnue/layers/clipped_relu.h
Original file line number Diff line number Diff line change
Expand Up @@ -26,51 +26,41 @@
namespace Stockfish::Eval::NNUE::Layers {

// Clipped ReLU
template <typename PreviousLayer>
template <IndexType InDims>
class ClippedReLU {
public:
// Input/output type
using InputType = typename PreviousLayer::OutputType;
using InputType = std::int32_t;
using OutputType = std::uint8_t;
static_assert(std::is_same<InputType, std::int32_t>::value, "");

// Number of input/output dimensions
static constexpr IndexType InputDimensions = PreviousLayer::OutputDimensions;
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = InputDimensions;
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple<IndexType>(OutputDimensions, 32);

// Size of forward propagation buffer used in this layer
static constexpr std::size_t SelfBufferSize =
ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize);

// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t BufferSize =
PreviousLayer::BufferSize + SelfBufferSize;
using OutputBuffer = OutputType[PaddedOutputDimensions];

// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value() {
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0x538D24C7u;
hashValue += PreviousLayer::get_hash_value();
hashValue += prevHash;
return hashValue;
}

// Read network parameters
bool read_parameters(std::istream& stream) {
return previousLayer.read_parameters(stream);
bool read_parameters(std::istream&) {
return true;
}

// Write network parameters
bool write_parameters(std::ostream& stream) const {
return previousLayer.write_parameters(stream);
bool write_parameters(std::ostream&) const {
return true;
}

// Forward propagation
const OutputType* propagate(
const TransformedFeatureType* transformedFeatures, char* buffer) const {
const auto input = previousLayer.propagate(
transformedFeatures, buffer + SelfBufferSize);
const auto output = reinterpret_cast<OutputType*>(buffer);
const InputType* input, OutputType* output) const {

#if defined(USE_AVX2)
if constexpr (InputDimensions % SimdWidth == 0) {
Expand Down Expand Up @@ -191,9 +181,6 @@ namespace Stockfish::Eval::NNUE::Layers {

return output;
}

private:
PreviousLayer previousLayer;
};

} // namespace Stockfish::Eval::NNUE::Layers
Expand Down
Loading

0 comments on commit cb9c259

Please sign in to comment.