Skip to content

Pretrained Models presented in "Various Errors Improve Neural Grammatical Error Correction"

Notifications You must be signed in to change notification settings

nymwa/163M_pretrain

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

163M pretrain

pretrained models using 163M data presented in "Various Errors Improve Neural Grammatical Error Correction"

  • bpe.model / bpe.vocab

    • models of sentencepiece (0.1.95)
  • {1..5}.pt

    • pretrained models of fairseq (0.10.2)
    • trained using 163M sentences x 20 epochs
    • 1.pt
    • 2.pt
    • 3.pt
    • 4.pt
    • 5.pt
  • data-bin/dict.{src,trg}.txt

    • vocabulary of fairseq models
  • note

    • Please normalize inputs before applying BPE using reguligilo (https://github.com/nymwa/reguligilo).
    • Please use -a option like reguligilo -a.
    • input -> reguligilo -> bpe -> encoder-decoder -> remove bpe -> malreguligilo (denormalization) -> output
  • scores (beam=12 lenpen=0.6)

BEA19 CoNLL 14 JFLEG
single 0 59.62 55.05 58.09
single 1 59.71 55.29 58.01
single 2 60.59 56.22 58.09
single 3 59.76 55.35 58.56
single 4 59.82 55.17 58.39
average 59.90 55.42 58.23
ensemble 60.89 55.73 58.37

About

Pretrained Models presented in "Various Errors Improve Neural Grammatical Error Correction"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published