Skip to content

Commit

Permalink
test: distribute crypto tests into separate files
Browse files Browse the repository at this point in the history
This commit distributes many of the various tests that were previously
strewn about `test-crypto.js` into their own files, such as for Ciphers
and Deciphers, Hashing, and HMACs. Copy pasta, and no style changes
besides removing a few now-unnecessary closures.

Helps eliminate file bloat and allows for easier test prognosis.

PR-URL: #827
Reviewed-By: Jeremiah Senkpiel <[email protected]>
Reviewed-By: Ben Noordhuis <[email protected]>
  • Loading branch information
brendanashworth authored and Fishrock123 committed Feb 13, 2015
1 parent 789ff95 commit becb4e9
Show file tree
Hide file tree
Showing 8 changed files with 1,180 additions and 1,107 deletions.
170 changes: 170 additions & 0 deletions test/parallel/test-crypto-cipher-decipher.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
var common = require('../common');
var assert = require('assert');

try {
var crypto = require('crypto');
} catch (e) {
console.log('Not compiled with OPENSSL support.');
process.exit();
}

function testCipher1(key) {
// Test encryption and decryption
var plaintext = 'Keep this a secret? No! Tell everyone about node.js!';
var cipher = crypto.createCipher('aes192', key);

// encrypt plaintext which is in utf8 format
// to a ciphertext which will be in hex
var ciph = cipher.update(plaintext, 'utf8', 'hex');
// Only use binary or hex, not base64.
ciph += cipher.final('hex');

var decipher = crypto.createDecipher('aes192', key);
var txt = decipher.update(ciph, 'hex', 'utf8');
txt += decipher.final('utf8');

assert.equal(txt, plaintext, 'encryption and decryption');

// streaming cipher interface
// NB: In real life, it's not guaranteed that you can get all of it
// in a single read() like this. But in this case, we know it's
// quite small, so there's no harm.
var cStream = crypto.createCipher('aes192', key);
cStream.end(plaintext);
ciph = cStream.read();

var dStream = crypto.createDecipher('aes192', key);
dStream.end(ciph);
txt = dStream.read().toString('utf8');

assert.equal(txt, plaintext, 'encryption and decryption with streams');
}


function testCipher2(key) {
// encryption and decryption with Base64
// reported in https://github.com/joyent/node/issues/738
var plaintext =
'32|RmVZZkFUVmpRRkp0TmJaUm56ZU9qcnJkaXNNWVNpTTU*|iXmckfRWZBGWWELw' +
'eCBsThSsfUHLeRe0KCsK8ooHgxie0zOINpXxfZi/oNG7uq9JWFVCk70gfzQH8ZUJ' +
'jAfaFg**';
var cipher = crypto.createCipher('aes256', key);

// encrypt plaintext which is in utf8 format
// to a ciphertext which will be in Base64
var ciph = cipher.update(plaintext, 'utf8', 'base64');
ciph += cipher.final('base64');

var decipher = crypto.createDecipher('aes256', key);
var txt = decipher.update(ciph, 'base64', 'utf8');
txt += decipher.final('utf8');

assert.equal(txt, plaintext, 'encryption and decryption with Base64');
}


function testCipher3(key, iv) {
// Test encyrption and decryption with explicit key and iv
var plaintext =
'32|RmVZZkFUVmpRRkp0TmJaUm56ZU9qcnJkaXNNWVNpTTU*|iXmckfRWZBGWWELw' +
'eCBsThSsfUHLeRe0KCsK8ooHgxie0zOINpXxfZi/oNG7uq9JWFVCk70gfzQH8ZUJ' +
'jAfaFg**';
var cipher = crypto.createCipheriv('des-ede3-cbc', key, iv);
var ciph = cipher.update(plaintext, 'utf8', 'hex');
ciph += cipher.final('hex');

var decipher = crypto.createDecipheriv('des-ede3-cbc', key, iv);
var txt = decipher.update(ciph, 'hex', 'utf8');
txt += decipher.final('utf8');

assert.equal(txt, plaintext, 'encryption and decryption with key and iv');

// streaming cipher interface
// NB: In real life, it's not guaranteed that you can get all of it
// in a single read() like this. But in this case, we know it's
// quite small, so there's no harm.
var cStream = crypto.createCipheriv('des-ede3-cbc', key, iv);
cStream.end(plaintext);
ciph = cStream.read();

var dStream = crypto.createDecipheriv('des-ede3-cbc', key, iv);
dStream.end(ciph);
txt = dStream.read().toString('utf8');

assert.equal(txt, plaintext, 'streaming cipher iv');
}


function testCipher4(key, iv) {
// Test encyrption and decryption with explicit key and iv
var plaintext =
'32|RmVZZkFUVmpRRkp0TmJaUm56ZU9qcnJkaXNNWVNpTTU*|iXmckfRWZBGWWELw' +
'eCBsThSsfUHLeRe0KCsK8ooHgxie0zOINpXxfZi/oNG7uq9JWFVCk70gfzQH8ZUJ' +
'jAfaFg**';
var cipher = crypto.createCipheriv('des-ede3-cbc', key, iv);
var ciph = cipher.update(plaintext, 'utf8', 'buffer');
ciph = Buffer.concat([ciph, cipher.final('buffer')]);

var decipher = crypto.createDecipheriv('des-ede3-cbc', key, iv);
var txt = decipher.update(ciph, 'buffer', 'utf8');
txt += decipher.final('utf8');

assert.equal(txt, plaintext, 'encryption and decryption with key and iv');
}


testCipher1('MySecretKey123');
testCipher1(new Buffer('MySecretKey123'));

testCipher2('0123456789abcdef');
testCipher2(new Buffer('0123456789abcdef'));

testCipher3('0123456789abcd0123456789', '12345678');
testCipher3('0123456789abcd0123456789', new Buffer('12345678'));
testCipher3(new Buffer('0123456789abcd0123456789'), '12345678');
testCipher3(new Buffer('0123456789abcd0123456789'), new Buffer('12345678'));

testCipher4(new Buffer('0123456789abcd0123456789'), new Buffer('12345678'));


// Base64 padding regression test, see #4837.
(function() {
var c = crypto.createCipher('aes-256-cbc', 'secret');
var s = c.update('test', 'utf8', 'base64') + c.final('base64');
assert.equal(s, '375oxUQCIocvxmC5At+rvA==');
})();

// Calling Cipher.final() or Decipher.final() twice should error but
// not assert. See #4886.
(function() {
var c = crypto.createCipher('aes-256-cbc', 'secret');
try { c.final('xxx') } catch (e) { /* Ignore. */ }
try { c.final('xxx') } catch (e) { /* Ignore. */ }
try { c.final('xxx') } catch (e) { /* Ignore. */ }
var d = crypto.createDecipher('aes-256-cbc', 'secret');
try { d.final('xxx') } catch (e) { /* Ignore. */ }
try { d.final('xxx') } catch (e) { /* Ignore. */ }
try { d.final('xxx') } catch (e) { /* Ignore. */ }
})();

// Regression test for #5482: string to Cipher#update() should not assert.
(function() {
var c = crypto.createCipher('aes192', '0123456789abcdef');
c.update('update');
c.final();
})();

// #5655 regression tests, 'utf-8' and 'utf8' are identical.
(function() {
var c = crypto.createCipher('aes192', '0123456789abcdef');
c.update('update', ''); // Defaults to "utf8".
c.final('utf-8'); // Should not throw.

c = crypto.createCipher('aes192', '0123456789abcdef');
c.update('update', 'utf8');
c.final('utf-8'); // Should not throw.

c = crypto.createCipher('aes192', '0123456789abcdef');
c.update('update', 'utf-8');
c.final('utf8'); // Should not throw.
})();
180 changes: 180 additions & 0 deletions test/parallel/test-crypto-dh.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,180 @@
var common = require('../common');
var assert = require('assert');
var constants = require('constants');

try {
var crypto = require('crypto');
} catch (e) {
console.log('Not compiled with OPENSSL support.');
process.exit();
}

// Test Diffie-Hellman with two parties sharing a secret,
// using various encodings as we go along
var dh1 = crypto.createDiffieHellman(256);
var p1 = dh1.getPrime('buffer');
var dh2 = crypto.createDiffieHellman(p1, 'buffer');
var key1 = dh1.generateKeys();
var key2 = dh2.generateKeys('hex');
var secret1 = dh1.computeSecret(key2, 'hex', 'base64');
var secret2 = dh2.computeSecret(key1, 'binary', 'buffer');

assert.equal(secret1, secret2.toString('base64'));
assert.equal(dh1.verifyError, 0);
assert.equal(dh2.verifyError, 0);

assert.throws(function() {
crypto.createDiffieHellman([0x1, 0x2]);
});

assert.throws(function() {
crypto.createDiffieHellman(function() { });
});

assert.throws(function() {
crypto.createDiffieHellman(/abc/);
});

assert.throws(function() {
crypto.createDiffieHellman({});
});

// Create "another dh1" using generated keys from dh1,
// and compute secret again
var dh3 = crypto.createDiffieHellman(p1, 'buffer');
var privkey1 = dh1.getPrivateKey();
dh3.setPublicKey(key1);
dh3.setPrivateKey(privkey1);

assert.deepEqual(dh1.getPrime(), dh3.getPrime());
assert.deepEqual(dh1.getGenerator(), dh3.getGenerator());
assert.deepEqual(dh1.getPublicKey(), dh3.getPublicKey());
assert.deepEqual(dh1.getPrivateKey(), dh3.getPrivateKey());
assert.equal(dh3.verifyError, 0);

var secret3 = dh3.computeSecret(key2, 'hex', 'base64');

assert.equal(secret1, secret3);

// Run this one twice to make sure that the dh3 clears its error properly
(function() {
var c = crypto.createDecipher('aes-128-ecb', '');
assert.throws(function() { c.final('utf8') }, /wrong final block length/);
})();

assert.throws(function() {
dh3.computeSecret('');
}, /key is too small/i);

(function() {
var c = crypto.createDecipher('aes-128-ecb', '');
assert.throws(function() { c.final('utf8') }, /wrong final block length/);
})();

// Create a shared using a DH group.
var alice = crypto.createDiffieHellmanGroup('modp5');
var bob = crypto.createDiffieHellmanGroup('modp5');
alice.generateKeys();
bob.generateKeys();
var aSecret = alice.computeSecret(bob.getPublicKey()).toString('hex');
var bSecret = bob.computeSecret(alice.getPublicKey()).toString('hex');
assert.equal(aSecret, bSecret);
assert.equal(alice.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);
assert.equal(bob.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);

// Ensure specific generator (buffer) works as expected.
var modp1 = crypto.createDiffieHellmanGroup('modp1');
var modp1buf = new Buffer([
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc9, 0x0f,
0xda, 0xa2, 0x21, 0x68, 0xc2, 0x34, 0xc4, 0xc6, 0x62, 0x8b,
0x80, 0xdc, 0x1c, 0xd1, 0x29, 0x02, 0x4e, 0x08, 0x8a, 0x67,
0xcc, 0x74, 0x02, 0x0b, 0xbe, 0xa6, 0x3b, 0x13, 0x9b, 0x22,
0x51, 0x4a, 0x08, 0x79, 0x8e, 0x34, 0x04, 0xdd, 0xef, 0x95,
0x19, 0xb3, 0xcd, 0x3a, 0x43, 0x1b, 0x30, 0x2b, 0x0a, 0x6d,
0xf2, 0x5f, 0x14, 0x37, 0x4f, 0xe1, 0x35, 0x6d, 0x6d, 0x51,
0xc2, 0x45, 0xe4, 0x85, 0xb5, 0x76, 0x62, 0x5e, 0x7e, 0xc6,
0xf4, 0x4c, 0x42, 0xe9, 0xa6, 0x3a, 0x36, 0x20, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
]);
var exmodp1 = crypto.createDiffieHellman(modp1buf, new Buffer([2]));
modp1.generateKeys();
exmodp1.generateKeys();
var modp1Secret = modp1.computeSecret(exmodp1.getPublicKey()).toString('hex');
var exmodp1Secret = exmodp1.computeSecret(modp1.getPublicKey()).toString('hex');
assert.equal(modp1Secret, exmodp1Secret);
assert.equal(modp1.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);
assert.equal(exmodp1.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);


// Ensure specific generator (string with encoding) works as expected.
var exmodp1_2 = crypto.createDiffieHellman(modp1buf, '02', 'hex');
exmodp1_2.generateKeys();
modp1Secret = modp1.computeSecret(exmodp1_2.getPublicKey()).toString('hex');
var exmodp1_2Secret = exmodp1_2.computeSecret(modp1.getPublicKey())
.toString('hex');
assert.equal(modp1Secret, exmodp1_2Secret);
assert.equal(exmodp1_2.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);


// Ensure specific generator (string without encoding) works as expected.
var exmodp1_3 = crypto.createDiffieHellman(modp1buf, '\x02');
exmodp1_3.generateKeys();
modp1Secret = modp1.computeSecret(exmodp1_3.getPublicKey()).toString('hex');
var exmodp1_3Secret = exmodp1_3.computeSecret(modp1.getPublicKey())
.toString('hex');
assert.equal(modp1Secret, exmodp1_3Secret);
assert.equal(exmodp1_3.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);


// Ensure specific generator (numeric) works as expected.
var exmodp1_4 = crypto.createDiffieHellman(modp1buf, 2);
exmodp1_4.generateKeys();
modp1Secret = modp1.computeSecret(exmodp1_4.getPublicKey()).toString('hex');
var exmodp1_4Secret = exmodp1_4.computeSecret(modp1.getPublicKey())
.toString('hex');
assert.equal(modp1Secret, exmodp1_4Secret);
assert.equal(exmodp1_4.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);


var p = 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74' +
'020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F1437' +
'4FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' +
'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF';
var bad_dh = crypto.createDiffieHellman(p, 'hex');
assert.equal(bad_dh.verifyError, constants.DH_NOT_SUITABLE_GENERATOR);


// Test ECDH
var ecdh1 = crypto.createECDH('prime256v1');
var ecdh2 = crypto.createECDH('prime256v1');
var key1 = ecdh1.generateKeys();
var key2 = ecdh2.generateKeys('hex');
var secret1 = ecdh1.computeSecret(key2, 'hex', 'base64');
var secret2 = ecdh2.computeSecret(key1, 'binary', 'buffer');

assert.equal(secret1, secret2.toString('base64'));

// Point formats
assert.equal(ecdh1.getPublicKey('buffer', 'uncompressed')[0], 4);
var firstByte = ecdh1.getPublicKey('buffer', 'compressed')[0];
assert(firstByte === 2 || firstByte === 3);
var firstByte = ecdh1.getPublicKey('buffer', 'hybrid')[0];
assert(firstByte === 6 || firstByte === 7);

// ECDH should check that point is on curve
var ecdh3 = crypto.createECDH('secp256k1');
var key3 = ecdh3.generateKeys();

assert.throws(function() {
var secret3 = ecdh2.computeSecret(key3, 'binary', 'buffer');
});

// ECDH should allow .setPrivateKey()/.setPublicKey()
var ecdh4 = crypto.createECDH('prime256v1');

ecdh4.setPrivateKey(ecdh1.getPrivateKey());
ecdh4.setPublicKey(ecdh1.getPublicKey());

assert.throws(function() {
ecdh4.setPublicKey(ecdh3.getPublicKey());
});
Loading

0 comments on commit becb4e9

Please sign in to comment.