-
Notifications
You must be signed in to change notification settings - Fork 677
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This commit adds support for the signal timer mechanism in POSIX, the mirror to timerfd on Linux. Resolves #1424 Signed-off-by: Brian L. Troutwine <[email protected]>
- Loading branch information
Showing
8 changed files
with
432 additions
and
101 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
//! Timer API via signals. | ||
//! | ||
//! Timer is a POSIX API to create timers and get expiration notifications | ||
//! through queued Unix signals, for the current process. This is similar to | ||
//! Linux's timerfd mechanism, except that API is specific to Linux and makes | ||
//! use of file polling. | ||
//! | ||
//! For more documentation, please read [timer_create](https://pubs.opengroup.org/onlinepubs/9699919799/functions/timer_create.html). | ||
//! | ||
//! # Examples | ||
//! | ||
//! Create an interval timer that signals SIGALARM every 250 milliseconds. | ||
//! | ||
//! ```no_run | ||
//! use nix::sys::signal::{self, SigEvent, SigHandler, SigevNotify, Signal}; | ||
//! use nix::sys::timer::{Expiration, Timer, TimerSetTimeFlags}; | ||
//! use nix::time::ClockId; | ||
//! use std::convert::TryFrom; | ||
//! use std::sync::atomic::{AtomicU64, Ordering}; | ||
//! use std::thread::yield_now; | ||
//! use std::time::Duration; | ||
//! | ||
//! const SIG: Signal = Signal::SIGALRM; | ||
//! static ALARMS: AtomicU64 = AtomicU64::new(0); | ||
//! | ||
//! extern "C" fn handle_alarm(signal: libc::c_int) { | ||
//! let signal = Signal::try_from(signal).unwrap(); | ||
//! if signal == SIG { | ||
//! ALARMS.fetch_add(1, Ordering::Relaxed); | ||
//! } | ||
//! } | ||
//! | ||
//! fn main() { | ||
//! let clockid = ClockId::CLOCK_MONOTONIC; | ||
//! let sigevent = SigEvent::new(SigevNotify::SigevSignal { | ||
//! signal: SIG, | ||
//! si_value: 0, | ||
//! }); | ||
//! | ||
//! let mut timer = Timer::new(clockid, sigevent).unwrap(); | ||
//! let expiration = Expiration::Interval(Duration::from_millis(250).into()); | ||
//! let flags = TimerSetTimeFlags::empty(); | ||
//! timer.set(expiration, flags).expect("could not set timer"); | ||
//! | ||
//! let handler = SigHandler::Handler(handle_alarm); | ||
//! unsafe { signal::signal(SIG, handler) }.unwrap(); | ||
//! | ||
//! loop { | ||
//! let alarms = ALARMS.load(Ordering::Relaxed); | ||
//! if alarms >= 10 { | ||
//! println!("total alarms handled: {}", alarms); | ||
//! break; | ||
//! } | ||
//! yield_now() | ||
//! } | ||
//! } | ||
//! ``` | ||
use crate::sys::signal::SigEvent; | ||
use crate::sys::time::timer::TimerSpec; | ||
pub use crate::sys::time::timer::{Expiration, TimerSetTimeFlags}; | ||
use crate::time::ClockId; | ||
use crate::{errno::Errno, Result}; | ||
use core::mem; | ||
|
||
/// A Unix signal per-process timer. | ||
#[derive(Debug)] | ||
#[repr(transparent)] | ||
pub struct Timer(libc::timer_t); | ||
|
||
impl Timer { | ||
/// Creates a new timer based on the clock defined by `clockid`. The details | ||
/// of the signal and its handler are defined by the passed `sigevent`. | ||
pub fn new(clockid: ClockId, mut sigevent: SigEvent) -> Result<Self> { | ||
let mut timer_id: mem::MaybeUninit<libc::timer_t> = mem::MaybeUninit::uninit(); | ||
Errno::result(unsafe { | ||
libc::timer_create( | ||
clockid.as_raw(), | ||
sigevent.as_mut_ptr(), | ||
timer_id.as_mut_ptr(), | ||
) | ||
}) | ||
.map(|_| { | ||
// SAFETY: libc::timer_create is responsible for initializing | ||
// timer_id. | ||
unsafe { Self(timer_id.assume_init()) } | ||
}) | ||
} | ||
|
||
/// Set a new alarm on the timer. | ||
/// | ||
/// # Types of alarm | ||
/// | ||
/// There are 3 types of alarms you can set: | ||
/// | ||
/// - one shot: the alarm will trigger once after the specified amount of | ||
/// time. | ||
/// Example: I want an alarm to go off in 60s and then disable itself. | ||
/// | ||
/// - interval: the alarm will trigger every specified interval of time. | ||
/// Example: I want an alarm to go off every 60s. The alarm will first | ||
/// go off 60s after I set it and every 60s after that. The alarm will | ||
/// not disable itself. | ||
/// | ||
/// - interval delayed: the alarm will trigger after a certain amount of | ||
/// time and then trigger at a specified interval. | ||
/// Example: I want an alarm to go off every 60s but only start in 1h. | ||
/// The alarm will first trigger 1h after I set it and then every 60s | ||
/// after that. The alarm will not disable itself. | ||
/// | ||
/// # Relative vs absolute alarm | ||
/// | ||
/// If you do not set any `TimerSetTimeFlags`, then the `TimeSpec` you pass | ||
/// to the `Expiration` you want is relative. If however you want an alarm | ||
/// to go off at a certain point in time, you can set `TFD_TIMER_ABSTIME`. | ||
/// Then the one shot TimeSpec and the delay TimeSpec of the delayed | ||
/// interval are going to be interpreted as absolute. | ||
/// | ||
/// # Disabling alarms | ||
/// | ||
/// Note: Only one alarm can be set for any given timer. Setting a new alarm | ||
/// actually removes the previous one. | ||
/// | ||
/// Note: Setting a one shot alarm with a 0s TimeSpec disable the alarm | ||
/// altogether. | ||
pub fn set(&mut self, expiration: Expiration, flags: TimerSetTimeFlags) -> Result<()> { | ||
let timerspec: TimerSpec = expiration.into(); | ||
Errno::result(unsafe { | ||
libc::timer_settime( | ||
self.0, | ||
flags.bits(), | ||
timerspec.as_ref(), | ||
core::ptr::null_mut(), | ||
) | ||
}) | ||
.map(drop) | ||
} | ||
|
||
/// Get the parameters for the alarm currently set, if any. | ||
pub fn get(&self) -> Result<Option<Expiration>> { | ||
let mut timerspec = TimerSpec::none(); | ||
Errno::result(unsafe { libc::timer_gettime(self.0, timerspec.as_mut()) }).map(|_| { | ||
if timerspec.as_ref().it_interval.tv_sec == 0 | ||
&& timerspec.as_ref().it_interval.tv_nsec == 0 | ||
&& timerspec.as_ref().it_value.tv_sec == 0 | ||
&& timerspec.as_ref().it_value.tv_nsec == 0 | ||
{ | ||
None | ||
} else { | ||
Some(timerspec.into()) | ||
} | ||
}) | ||
} | ||
|
||
/// Return the number of timers that have overrun | ||
/// | ||
/// Each timer is able to queue one signal to the process at a time, meaning | ||
/// if the signal is not handled before the next expiration the timer has | ||
/// 'overrun'. This function returns how many times that has happened to | ||
/// this timer, up to `libc::DELAYTIMER_MAX`. If more than the maximum | ||
/// number of overruns have happened the return is capped to the maximum. | ||
pub fn overruns(&self) -> i32 { | ||
unsafe { libc::timer_getoverrun(self.0) } | ||
} | ||
} | ||
|
||
impl Drop for Timer { | ||
fn drop(&mut self) { | ||
if !std::thread::panicking() { | ||
let result = Errno::result(unsafe { libc::timer_delete(self.0) }); | ||
if let Err(Errno::EINVAL) = result { | ||
panic!("close of Timer encountered EINVAL"); | ||
} | ||
} | ||
} | ||
} |
Oops, something went wrong.