Skip to content

Custom AEMO MMS Data Model CSV reader for Apache Spark

License

Notifications You must be signed in to change notification settings

niftimus/SparkMMS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SparkMMS Reader

Custom Electricity Market Management System (MMS) CSV reader library for Apache Spark.

This library can be used to efficiently read MMS data model reports in bulk - e.g. from monthly DVDs: (http://www.nemweb.com.au/Data_Archive/Wholesale_Electricity/MMSDM/2021/MMSDM_2021_08/MMSDM_Historical_Data_SQLLoader/DOCUMENTATION/Participant_Monthly_DVD.pdf)

It uses Spark's DataSource V2 API.

It reads files in AEMO's CSV format: (https://aemo.com.au/-/media/files/market-it-systems/guide-to-csv-data-format-standard.pdf?la=en)

Features

  • Partitions large files to avoid out of memory (OOM) errors
  • Supports multiple reports per file
  • Supports zipped files
  • Supports filter pushdown
  • Supports column pruning
  • Reads report schemas from input files
  • Registers {report_type, report_subtype, report_version} as temporary tables

Source data

Available from AEMO (Australian Energy Market Operator):

Building

git clone https://github.com/niftimus/SparkMMS.git
  • Compile
cd SparkMMS
mvn install
  • Confirm the JAR library is built:
ls -la ./target/SparkMMS-0.4-SNAPSHOT.jar

Usage

  • Start PySpark
# Ensure SPARK_HOME is set to the directory where Spark has been uncompressed
# export SPARK_HOME = <path_to_spark>
cd SparkMMS
$SPARK_HOME/bin/pyspark --jars ./target/SparkMMS-0.4-SNAPSHOT.jar --packages org.apache.hadoop:hadoop-azure:3.4.0,org.apache.hadoop:hadoop-aws:3.4.0

Demo (within PySpark shell)

  • Read in a sample file
df = spark \
    .read \
    .format("com.analyticsanvil.SparkMMS") \
    .option("fileName", "./target/test-classes/com/analyticsanvil/test/PUBLIC_DVD_TRADINGLOAD_202010010000.CSV") \
    .option("maxRowsPerPartition","50000") \
    .option("minSplitFilesize","1000000") \
    .load()
  • Show row chunks:
df.show()
  • Get a single report and show the results:
# Get a new dataframe with the schema of a single report type
def getReport(df, report_type, report_subtype, report_version):
    from pyspark.sql.functions import explode
    df = df.where(f"report_type = '{report_type}' and report_subtype = '{report_subtype}' and report_version = {report_version}")
    tmpDF = df.select("column_headers", explode(df.data).alias("datarow"))
    
    colHeaders = df.select("column_headers").first().column_headers
    
    for idx, colName in enumerate(colHeaders):
        tmpDF = tmpDF.withColumn(colName, tmpDF.datarow[idx])
    
    tmpDF = tmpDF.drop("column_headers").drop("datarow")    
    
    return tmpDF

d=getReport(df, report_type = 'TRADING', report_subtype = 'UNIT_SOLUTION', report_version = 2)

d.show(20, False)
  • Register the report as a temporary table and query using SQL:
# Register all reports available in the dataframe as temporary view in the metastore
def registerAllReports(df):
    tmpDF = df.select("report_type","report_subtype","report_version")
    tmpDF = tmpDF.dropDuplicates()
    
    reports = tmpDF.collect()
    
    for r in reports:
        tmpReportDF = getReport(df,r.report_type,r.report_subtype,r.report_version)
        tmpReportDF.createOrReplaceTempView(f"{r.report_type}_{r.report_subtype}_{r.report_version}")

registerAllReports(df)

spark.sql("show tables;").show()

spark.sql("select * from TRADING_UNIT_SOLUTION_2").show()