forked from plkmo/BERT-Relation-Extraction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_pretraining.py
39 lines (33 loc) · 1.85 KB
/
main_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 27 11:16:26 2019
@author: weetee
"""
from src.preprocessing_funcs import load_dataloaders
from src.trainer import train_and_fit
import logging
from argparse import ArgumentParser
'''
This trains the BERT model on matching the blanks
'''
logging.basicConfig(format='%(asctime)s [%(levelname)s]: %(message)s', \
datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)
logger = logging.getLogger('__file__')
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--pretrain_data", type=str, default="./data/cnn.txt", \
help="pre-training data .txt file path")
parser.add_argument("--batch_size", type=int, default=32, help="Training batch size")
parser.add_argument("--freeze", type=int, default=0, help='''1: Freeze most layers until classifier layers\
\n0: Don\'t freeze \
(Probably best not to freeze if GPU memory is sufficient)''')
parser.add_argument("--gradient_acc_steps", type=int, default=2, help="No. of steps of gradient accumulation")
parser.add_argument("--max_norm", type=float, default=1.0, help="Clipped gradient norm")
parser.add_argument("--fp16", type=int, default=0, help="1: use mixed precision ; 0: use floating point 32") # mixed precision doesn't seem to train well
parser.add_argument("--num_epochs", type=int, default=18, help="No of epochs")
parser.add_argument("--lr", type=float, default=0.0001, help="learning rate")
parser.add_argument("--model_no", type=int, default=0, help='''Model ID: 0 - BERT\n
1 - ALBERT''')
args = parser.parse_args()
output = train_and_fit(args)