-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
fix(dataset) change name of recording dataset file
- Loading branch information
1 parent
0217aa3
commit 911c825
Showing
1 changed file
with
177 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
""" | ||
MIT License | ||
Copyright (c) 2023 Neurocode | ||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. | ||
File created: 2022-09-10 | ||
Last updated: 2023-09-23 | ||
""" | ||
|
||
from __future__ import annotations | ||
|
||
import logging | ||
import mne | ||
import numpy as np | ||
|
||
from torch.utils.data import Dataset | ||
from neurocode.datasets.simulated import SimulatedDataset | ||
|
||
from collections import OrderedDict | ||
from typing import ( | ||
Any, | ||
Union, | ||
) | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class RecordingDataset(Dataset): | ||
def __init__( | ||
self, | ||
data: Union[list[mne.io.Raw], dict[str, mne.io.Raw]], | ||
labels: Union[list[list[mne.label.Label]], dict[str, list[mne.io.Label]]], | ||
**kwargs: dict, | ||
): | ||
""" """ | ||
super(RecordingDataset, self).__init__() | ||
|
||
if isinstance(data, list) and isinstance(labels, list): | ||
raise ValueError( | ||
f"Can not infer recording names when both `data` and `labels` are of " | ||
f"type `list`. At least one of them have to be of type `dict`." | ||
) | ||
|
||
self._info = {} | ||
self._format_data_and_labels(data, labels, **kwargs) | ||
|
||
def __len__(self) -> int: | ||
""" """ | ||
return self._info["n_recordings"] | ||
|
||
def __getitem__( | ||
self, | ||
indices: tuple[Union[int, str], int], | ||
) -> Union[int, float, np.ndarray]: | ||
""" """ | ||
recording, window = indices | ||
|
||
if isinstance(recording, int): | ||
recording = self._data.keys().index(recording) | ||
|
||
return self._data[recording][window] | ||
|
||
def __iter__(self) -> tuple[mne.io.Raw, list]: | ||
for name in range(len(self)): | ||
yield (self._data[name], self._labels[name]) | ||
|
||
def _format_data_and_labels( | ||
self, | ||
data: Union[list[mne.io.Raw], dict[str, mne.io.Raw]], | ||
labels: Union[list[list[mne.label.Label]], dict[str, list[mne.io.Label]]], | ||
**kwargs, | ||
): | ||
""" """ | ||
|
||
if isinstance(data, list): | ||
data = OrderedDict((name, raw) for name, raw in zip(labels.keys(), data)) | ||
|
||
if isinstance(labels, list): | ||
labels = OrderedDict( | ||
(name, label) for name, label in zip(data.keys(), labels) | ||
) | ||
|
||
info = {} | ||
info = {**info, **kwargs} | ||
info["n_recordings"] = len(data) | ||
info["lengths"] = {name: len(raw) for name, raw in data.items()} | ||
|
||
self._data = data | ||
self._labels = labels | ||
self._info = info | ||
|
||
def data(self) -> dict[str, mne.io.Raw]: | ||
""" """ | ||
return self._data | ||
|
||
def labels(self) -> dict[str, list[mne.label.Label]]: | ||
""" """ | ||
return self._labels | ||
|
||
def info(self) -> dict[str, Any]: | ||
""" """ | ||
return self._info | ||
|
||
def train_valid_split( | ||
self, | ||
*, | ||
ratio: float = 0.6, | ||
shuffle: bool = True, | ||
) -> tuple[RecordingDataset, RecordingDataset]: | ||
""" """ | ||
split_idx = int(len(self) * ratio) | ||
indices = np.arange(len(self)) | ||
|
||
if shuffle: | ||
np.random.shuffle(indices) | ||
|
||
train_indices = indices[:split_idx] | ||
valid_indices = indices[split_idx:] | ||
|
||
X_train = {} | ||
Y_train = {} | ||
for i, name in enumerate(self._data.keys()): | ||
if i in train_indices: | ||
X_train[name] = self._data[name] | ||
Y_train[name] = self._labels[name] | ||
|
||
X_valid = {} | ||
Y_valid = {} | ||
for i, name in enumerate(self._data.keys()): | ||
if i in valid_indices: | ||
X_valid[name] = self._data[name] | ||
Y_valid[name] = self._labels[name] | ||
|
||
train_dataset = RecordingDataset( | ||
data=X_train, | ||
labels=Y_train, | ||
**self._info, | ||
) | ||
|
||
valid_dataset = RecordingDataset( | ||
data=X_valid, | ||
labels=Y_valid, | ||
**self._info, | ||
) | ||
|
||
return (train_dataset, valid_dataset) | ||
|
||
@classmethod | ||
def from_simulated( | ||
cls, | ||
dataset: SimulatedDataset, | ||
**kwargs: dict, | ||
) -> RecordingDataset: | ||
""" """ | ||
cls( | ||
data=dataset.data(), | ||
labels=dataset.labels(), | ||
**kwargs, | ||
) |