Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Automated]: Update Python API docs #24

Merged
merged 1 commit into from
Mar 14, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 25 additions & 9 deletions docs/api/python/api_summary.html

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion docs/api/python/auto_examples/plot_backend.html
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@
<p>The backend API is implemented by other frameworks
and makes it easier to switch between multiple runtimes
with the same API.</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.015 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.017 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-plot-backend-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../downloads/3e23fa9ebb26f4728ee8426ed7da0f63/plot_backend.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_backend.py</span></code></a></p>
Expand Down
2 changes: 1 addition & 1 deletion docs/api/python/auto_examples/plot_common_errors.html
Original file line number Diff line number Diff line change
Expand Up @@ -203,7 +203,7 @@
ERROR with Shape=(2, 1, 2) - [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Invalid rank for input: float_input Got: 3 Expected: 2 Please fix either the inputs or the model.
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.008 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.012 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-plot-common-errors-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../downloads/3a2955e44bf8f95a0eee6e71695ad788/plot_common_errors.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_common_errors.py</span></code></a></p>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,7 @@ <h2><a class="toc-backref" href="#id1">Train a pipeline</a><a class="headerlink"
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>0.8875422353009019
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>0.8427444349522607
</pre></div>
</div>
</section>
Expand Down Expand Up @@ -193,12 +193,12 @@ <h2><a class="toc-backref" href="#id2">Conversion to ONNX format</a><a class="he
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>0.9999999999999098
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>0.9999999999999056
</pre></div>
</div>
<p>Very similar. <em>ONNX Runtime</em> uses floats instead of doubles,
that explains the small discrepencies.</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.977 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 1.181 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-plot-convert-pipeline-vectorizer-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../downloads/982a1f7abbb8ffc5d5e98b671c35e5aa/plot_convert_pipeline_vectorizer.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_convert_pipeline_vectorizer.py</span></code></a></p>
Expand Down
30 changes: 15 additions & 15 deletions docs/api/python/auto_examples/plot_load_and_predict.html
Original file line number Diff line number Diff line change
Expand Up @@ -98,24 +98,24 @@
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>[array([[[0.6510769 , 0.53574014, 0.5246311 , 0.7076354 , 0.62458384],
[0.6178043 , 0.6118449 , 0.55362356, 0.530993 , 0.51342654],
[0.51229876, 0.63369405, 0.53360677, 0.6799468 , 0.6856118 ],
[0.61446375, 0.5756609 , 0.58993536, 0.52939814, 0.5155214 ]],

[[0.5833087 , 0.5912285 , 0.5129974 , 0.52104723, 0.5589873 ],
[0.6912771 , 0.67039084, 0.6275468 , 0.6388816 , 0.7219965 ],
[0.7254892 , 0.5989482 , 0.55460036, 0.5609656 , 0.5783487 ],
[0.7270879 , 0.6662836 , 0.6403104 , 0.59592724, 0.5243805 ]],

[[0.6805607 , 0.5933663 , 0.7285657 , 0.54098815, 0.607139 ],
[0.6130347 , 0.72747064, 0.65980005, 0.57267225, 0.62237465],
[0.69912946, 0.58575433, 0.7252008 , 0.5705788 , 0.5725795 ],
[0.6403949 , 0.64117014, 0.6178422 , 0.55547553, 0.6336622 ]]],
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>[array([[[0.62922037, 0.561156 , 0.5080795 , 0.6244578 , 0.5731013 ],
[0.70947427, 0.6941823 , 0.62022245, 0.62342674, 0.6543724 ],
[0.5332583 , 0.6587574 , 0.59361964, 0.62477636, 0.6500683 ],
[0.6214162 , 0.60647833, 0.6681156 , 0.7199558 , 0.5032289 ]],

[[0.536524 , 0.6299298 , 0.6306909 , 0.6419255 , 0.68945134],
[0.67906946, 0.71493363, 0.6613402 , 0.61385757, 0.5439159 ],
[0.64069986, 0.6363738 , 0.541755 , 0.58712244, 0.5134371 ],
[0.69225496, 0.5437989 , 0.66372246, 0.7143415 , 0.57663304]],

[[0.68010736, 0.50777453, 0.5135236 , 0.6203964 , 0.7076469 ],
[0.715078 , 0.63704497, 0.6765113 , 0.52124536, 0.5760229 ],
[0.50323224, 0.69429994, 0.574678 , 0.58742845, 0.631329 ],
[0.6279564 , 0.536385 , 0.5186675 , 0.64032906, 0.5367126 ]]],
dtype=float32)]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.008 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.012 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-plot-load-and-predict-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../downloads/7c8424f45d0156abd4d0221c65601124/plot_load_and_predict.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_load_and_predict.py</span></code></a></p>
Expand Down
2 changes: 1 addition & 1 deletion docs/api/python/auto_examples/plot_metadata.html
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@
version=0
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.003 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.004 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-plot-metadata-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../downloads/932fe1ee7f48f55a6155d2f378bc85a0/plot_metadata.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_metadata.py</span></code></a></p>
Expand Down
4 changes: 2 additions & 2 deletions docs/api/python/auto_examples/plot_pipeline.html
Original file line number Diff line number Diff line change
Expand Up @@ -168,10 +168,10 @@ <h2><a class="toc-backref" href="#id2">Draw a model with ONNX</a><a class="heade
</pre></div>
</div>
<img src="../images/sphx_glr_plot_pipeline_001.png" srcset="../images/sphx_glr_plot_pipeline_001.png" alt="plot pipeline" class = "sphx-glr-single-img"/><p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>&lt;matplotlib.image.AxesImage object at 0x7f5f54bbbb20&gt;
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>&lt;matplotlib.image.AxesImage object at 0x7fd449283c10&gt;
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.284 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.221 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-plot-pipeline-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../downloads/d436e9922b51a71358604ec00f09e7e4/plot_pipeline.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_pipeline.py</span></code></a></p>
Expand Down
20 changes: 10 additions & 10 deletions docs/api/python/auto_examples/plot_profiling.html
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>onnxruntime_profile__2022-03-12_01-42-14.json
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>onnxruntime_profile__2022-03-14_22-35-38.json
</pre></div>
</div>
<p>The results are stored un a file in JSON format.
Expand All @@ -111,23 +111,23 @@
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>[{&#39;args&#39;: {},
&#39;cat&#39;: &#39;Session&#39;,
&#39;dur&#39;: 71,
&#39;dur&#39;: 60,
&#39;name&#39;: &#39;model_loading_array&#39;,
&#39;ph&#39;: &#39;X&#39;,
&#39;pid&#39;: 3179,
&#39;tid&#39;: 3179,
&#39;ts&#39;: 2},
&#39;pid&#39;: 2949,
&#39;tid&#39;: 2949,
&#39;ts&#39;: 1},
{&#39;args&#39;: {},
&#39;cat&#39;: &#39;Session&#39;,
&#39;dur&#39;: 258,
&#39;dur&#39;: 240,
&#39;name&#39;: &#39;session_initialization&#39;,
&#39;ph&#39;: &#39;X&#39;,
&#39;pid&#39;: 3179,
&#39;tid&#39;: 3179,
&#39;ts&#39;: 90}]
&#39;pid&#39;: 2949,
&#39;tid&#39;: 2949,
&#39;ts&#39;: 80}]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.005 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.008 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-plot-profiling-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../downloads/cfe61aca1f0a89486c7024466ea500fd/plot_profiling.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_profiling.py</span></code></a></p>
Expand Down
103 changes: 47 additions & 56 deletions docs/api/python/auto_examples/plot_train_convert_predict.html
Original file line number Diff line number Diff line change
Expand Up @@ -73,16 +73,7 @@ <h2><a class="toc-backref" href="#id1">Train a logistic regression</a><a class="
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>/home/runner/.local/lib/python3.8/site-packages/sklearn/linear_model/_logistic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(

LogisticRegression()
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>LogisticRegression()
</pre></div>
</div>
<p>We compute the prediction on the test set
Expand All @@ -94,9 +85,9 @@ <h2><a class="toc-backref" href="#id1">Train a logistic regression</a><a class="
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>[[11 0 0]
[ 0 18 0]
[ 0 0 9]]
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>[[13 0 0]
[ 0 10 2]
[ 0 0 13]]
</pre></div>
</div>
</section>
Expand Down Expand Up @@ -140,9 +131,9 @@ <h2><a class="toc-backref" href="#id2">Conversion to ONNX format</a><a class="he
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>[[11 0 0]
[ 0 18 0]
[ 0 0 9]]
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>[[13 0 0]
[ 0 10 0]
[ 0 0 15]]
</pre></div>
</div>
<p>The prediction are perfectly identical.</p>
Expand All @@ -158,9 +149,9 @@ <h2><a class="toc-backref" href="#id3">Probabilities</a><a class="headerlink" hr
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>[[1.14573460e-04 7.54078165e-02 9.24477610e-01]
[2.53130984e-02 9.27734094e-01 4.69528077e-02]
[2.45989404e-06 1.17669280e-02 9.88230612e-01]]
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>[[1.26071894e-02 8.64522533e-01 1.22870277e-01]
[9.19091446e-05 4.65963473e-02 9.53311744e-01]
[2.31274116e-02 9.49638079e-01 2.72345094e-02]]
</pre></div>
</div>
<p>And then with ONNX Runtime.
Expand All @@ -173,9 +164,9 @@ <h2><a class="toc-backref" href="#id3">Probabilities</a><a class="headerlink" hr
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>[{0: 0.00011457340588094667, 1: 0.07540777325630188, 2: 0.9244776964187622},
{0: 0.025313090533018112, 1: 0.9277341365814209, 2: 0.04695282503962517},
{0: 2.459894403727958e-06, 1: 0.01176692359149456, 2: 0.9882306456565857}]
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>[{0: 0.012607195414602757, 1: 0.864522397518158, 2: 0.12287036329507828},
{0: 9.190914715873078e-05, 1: 0.04659634083509445, 2: 0.9533118009567261},
{0: 0.02312742918729782, 1: 0.9496380686759949, 2: 0.027234479784965515}]
</pre></div>
</div>
<p>Let’s benchmark.</p>
Expand All @@ -198,11 +189,11 @@ <h2><a class="toc-backref" href="#id3">Probabilities</a><a class="headerlink" hr
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>Execution time for clr.predict
Average 4.61e-05 min=3.94e-05 max=6.49e-05
Average 7.82e-05 min=7.26e-05 max=9.47e-05
Execution time for ONNX Runtime
Average 2.28e-05 min=2.2e-05 max=2.82e-05
Average 3.12e-05 min=2.83e-05 max=4.09e-05

2.2846775000004982e-05
3.116068000025507e-05
</pre></div>
</div>
<p>Let’s benchmark a scenario similar to what a webservice
Expand All @@ -228,11 +219,11 @@ <h2><a class="toc-backref" href="#id3">Probabilities</a><a class="headerlink" hr
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>Execution time for clr.predict
Average 0.00406 min=0.00364 max=0.00451
Average 0.00672 min=0.00652 max=0.00703
Execution time for sess_predict
Average 0.00103 min=0.000915 max=0.00109
Average 0.00152 min=0.00146 max=0.00166

0.001034282179998911
0.0015232249750000903
</pre></div>
</div>
<p>Let’s do the same for the probabilities.</p>
Expand All @@ -248,11 +239,11 @@ <h2><a class="toc-backref" href="#id3">Probabilities</a><a class="headerlink" hr
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>Execution time for predict_proba
Average 0.00624 min=0.00571 max=0.00771
Average 0.00994 min=0.00965 max=0.0113
Execution time for sess_predict_proba
Average 0.00104 min=0.00088 max=0.00111
Average 0.00158 min=0.00154 max=0.00166

0.0010414897500004372
0.0015761207799998545
</pre></div>
</div>
<p>This second comparison is better as
Expand Down Expand Up @@ -288,11 +279,11 @@ <h2><a class="toc-backref" href="#id4">Benchmark with RandomForest</a><a class="
</div>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>Execution time for predict_proba
Average 0.701 min=0.678 max=0.748
Average 1.25 min=1.22 max=1.28
Execution time for sess_predict_proba
Average 0.001 min=0.000928 max=0.00113
Average 0.00204 min=0.00196 max=0.00223

0.0010013645900008327
0.0020432242550009506
</pre></div>
</div>
<p>Let’s see with different number of trees.</p>
Expand Down Expand Up @@ -326,40 +317,40 @@ <h2><a class="toc-backref" href="#id4">Benchmark with RandomForest</a><a class="
</div>
<img src="../images/sphx_glr_plot_train_convert_predict_001.png" srcset="../images/sphx_glr_plot_train_convert_predict_001.png" alt="Speed comparison between scikit-learn and ONNX Runtime For a random forest on Iris dataset" class = "sphx-glr-single-img"/><p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>5
Average 0.0623 min=0.0609 max=0.0637
Average 0.000827 min=0.000764 max=0.000927
Average 0.108 min=0.107 max=0.11
Average 0.00132 min=0.00122 max=0.00148
10
Average 0.096 min=0.095 max=0.0966
Average 0.000966 min=0.000837 max=0.00105
Average 0.17 min=0.167 max=0.172
Average 0.00138 min=0.00132 max=0.00152
15
Average 0.135 min=0.128 max=0.144
Average 0.000857 min=0.000802 max=0.000915
Average 0.233 min=0.231 max=0.236
Average 0.00142 min=0.00134 max=0.0015
20
Average 0.173 min=0.164 max=0.186
Average 0.00106 min=0.00103 max=0.0011
Average 0.293 min=0.288 max=0.297
Average 0.00176 min=0.00147 max=0.00277
25
Average 0.204 min=0.197 max=0.211
Average 0.000966 min=0.000937 max=0.00101
Average 0.355 min=0.347 max=0.36
Average 0.0015 min=0.00144 max=0.0016
30
Average 0.232 min=0.228 max=0.234
Average 0.000895 min=0.000789 max=0.000962
Average 0.414 min=0.412 max=0.419
Average 0.00154 min=0.0015 max=0.00157
35
Average 0.266 min=0.26 max=0.272
Average 0.000964 min=0.000911 max=0.00101
Average 0.472 min=0.47 max=0.476
Average 0.00155 min=0.00145 max=0.00162
40
Average 0.304 min=0.295 max=0.316
Average 0.00095 min=0.000807 max=0.00099
Average 0.533 min=0.53 max=0.536
Average 0.00161 min=0.00153 max=0.00176
45
Average 0.356 min=0.343 max=0.381
Average 0.00101 min=0.00089 max=0.00117
Average 0.589 min=0.588 max=0.591
Average 0.00161 min=0.00154 max=0.00171
50
Average 0.394 min=0.38 max=0.411
Average 0.00113 min=0.0011 max=0.00116
Average 0.654 min=0.646 max=0.66
Average 0.00174 min=0.00166 max=0.00183

&lt;matplotlib.legend.Legend object at 0x7f5f44352130&gt;
&lt;matplotlib.legend.Legend object at 0x7fd438d41220&gt;
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 19.889 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 51.038 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-auto-examples-plot-train-convert-predict-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../downloads/c647c128e0cf2b3db04ce60b41ef1a14/plot_train_convert_predict.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">plot_train_convert_predict.py</span></code></a></p>
Expand Down
Loading