Skip to content

Commit

Permalink
Support GpuHashJoin on Structs (NVIDIA#2173)
Browse files Browse the repository at this point in the history
Signed-off-by: sperlingxx <[email protected]>
  • Loading branch information
sperlingxx authored May 3, 2021
1 parent 54fc75f commit 18c85a3
Show file tree
Hide file tree
Showing 12 changed files with 207 additions and 72 deletions.
16 changes: 8 additions & 8 deletions docs/supported_ops.md
Original file line number Diff line number Diff line change
Expand Up @@ -561,9 +561,9 @@ Accelerator supports are described below.
<td>S</td>
<td><b>NS</b></td>
<td><b>NS</b></td>
<td><em>PS* (missing nested DECIMAL, BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><em>PS* (missing nested BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><b>NS</b></td>
<td><em>PS* (missing nested DECIMAL, BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><em>PS* (missing nested BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><b>NS</b></td>
</tr>
<tr>
Expand Down Expand Up @@ -607,9 +607,9 @@ Accelerator supports are described below.
<td>S</td>
<td><b>NS</b></td>
<td><b>NS</b></td>
<td><em>PS* (missing nested DECIMAL, BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><em>PS* (missing nested BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><b>NS</b></td>
<td><em>PS* (missing nested DECIMAL, BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><em>PS* (missing nested BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><b>NS</b></td>
</tr>
<tr>
Expand Down Expand Up @@ -676,9 +676,9 @@ Accelerator supports are described below.
<td>S</td>
<td><b>NS</b></td>
<td><b>NS</b></td>
<td><em>PS* (missing nested DECIMAL, BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><em>PS* (missing nested BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><b>NS</b></td>
<td><em>PS* (missing nested DECIMAL, BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><em>PS* (missing nested BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><b>NS</b></td>
</tr>
<tr>
Expand All @@ -699,9 +699,9 @@ Accelerator supports are described below.
<td>S</td>
<td><b>NS</b></td>
<td><b>NS</b></td>
<td><em>PS* (missing nested DECIMAL, BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><em>PS* (missing nested BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><b>NS</b></td>
<td><em>PS* (missing nested DECIMAL, BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><em>PS* (missing nested BINARY, CALENDAR, ARRAY, MAP, STRUCT, UDT)</em></td>
<td><b>NS</b></td>
</tr>
<tr>
Expand Down
133 changes: 101 additions & 32 deletions integration_tests/src/main/python/join_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,13 +33,30 @@
pytest.param(FloatGen(nullable=False), marks=[incompat]),
pytest.param(DoubleGen(nullable=False), marks=[incompat])]

basic_struct_gen = StructGen([
['child' + str(ind), sub_gen]
for ind, sub_gen in enumerate([StringGen(), ByteGen(), ShortGen(), IntegerGen(), LongGen(),
BooleanGen(), DateGen(), TimestampGen(), null_gen, decimal_gen_default])],
nullable=True)

basic_struct_gen_with_no_null_child = StructGen([
['child' + str(ind), sub_gen]
for ind, sub_gen in enumerate([StringGen(nullable=False), ByteGen(nullable=False),
ShortGen(nullable=False), IntegerGen(nullable=False), LongGen(nullable=False),
BooleanGen(nullable=False), DateGen(nullable=False), TimestampGen(nullable=False)])],
nullable=True)

basic_struct_gen_with_floats = StructGen([['child0', FloatGen()], ['child1', DoubleGen()]], nullable=False)

struct_gens = [basic_struct_gen, basic_struct_gen_with_no_null_child]

double_gen = [pytest.param(DoubleGen(), marks=[incompat])]

_sortmerge_join_conf = {'spark.sql.autoBroadcastJoinThreshold': '-1',
'spark.sql.join.preferSortMergeJoin': 'True',
'spark.sql.shuffle.partitions': '2',
'spark.sql.legacy.allowNegativeScaleOfDecimal': 'true'
}
'spark.sql.legacy.allowNegativeScaleOfDecimal': 'true',
}

# For spark to insert a shuffled hash join it has to be enabled with
# "spark.sql.join.preferSortMergeJoin" = "false" and both sides have to
Expand Down Expand Up @@ -121,16 +138,6 @@ def do_join(spark):
return left.join(right, left.key == right.r_key, join_type)
assert_gpu_and_cpu_are_equal_collect(do_join, conf=_sortmerge_join_conf)

@allow_non_gpu('SortMergeJoinExec', 'SortExec', 'KnownFloatingPointNormalized', 'NormalizeNaNAndZero', 'CreateNamedStruct', 'GetStructField', 'Literal', 'If', 'IsNull')
@ignore_order(local=True)
@pytest.mark.parametrize('data_gen', [all_basic_struct_gen], ids=idfn)
@pytest.mark.parametrize('join_type', ['Left', 'Right', 'Inner', 'LeftSemi', 'LeftAnti', 'Cross', 'FullOuter'], ids=idfn)
def test_sortmerge_join_struct_as_key(data_gen, join_type):
def do_join(spark):
left, right = create_df(spark, data_gen, 500, 500)
return left.join(right, left.a == right.r_a, join_type)
assert_gpu_fallback_collect(do_join, 'SortMergeJoinExec', conf=_sortmerge_join_conf)

# For spark to insert a shuffled hash join it has to be enabled with
# "spark.sql.join.preferSortMergeJoin" = "false" and both sides have to
# be larger than a broadcast hash join would want
Expand Down Expand Up @@ -173,26 +180,6 @@ def do_join(spark):
return left.join(broadcast(right), left.key == right.r_key, join_type)
assert_gpu_and_cpu_are_equal_collect(do_join, conf=allow_negative_scale_of_decimal_conf)

@allow_non_gpu('BroadcastHashJoinExec', 'BroadcastExchangeExec', 'KnownFloatingPointNormalized', 'ArrayTransform', 'LambdaFunction', 'NamedLambdaVariable', 'NormalizeNaNAndZero')
@ignore_order(local=True)
@pytest.mark.parametrize('data_gen', single_level_array_gens, ids=idfn)
@pytest.mark.parametrize('join_type', ['Left', 'Inner', 'LeftSemi', 'LeftAnti'], ids=idfn)
def test_broadcast_join_right_array_as_key(data_gen, join_type):
def do_join(spark):
left, right = create_df(spark, data_gen, 500, 50)
return left.join(broadcast(right), left.a == right.r_a, join_type)
assert_gpu_fallback_collect(do_join, 'BroadcastHashJoinExec', conf=allow_negative_scale_of_decimal_conf)

@allow_non_gpu('BroadcastHashJoinExec', 'BroadcastExchangeExec', 'KnownFloatingPointNormalized', 'NormalizeNaNAndZero', 'CreateNamedStruct', 'GetStructField', 'Literal', 'If', 'IsNull')
@ignore_order(local=True)
@pytest.mark.parametrize('data_gen', [all_basic_struct_gen], ids=idfn)
@pytest.mark.parametrize('join_type', ['Left', 'Inner', 'LeftSemi', 'LeftAnti'], ids=idfn)
def test_broadcast_join_right_struct_as_key(data_gen, join_type):
def do_join(spark):
left, right = create_df(spark, data_gen, 500, 50)
return left.join(broadcast(right), left.a == right.r_a, join_type)
assert_gpu_fallback_collect(do_join, 'BroadcastHashJoinExec', conf=allow_negative_scale_of_decimal_conf)

@ignore_order(local=True)
@pytest.mark.parametrize('data_gen', [all_basic_struct_gen], ids=idfn)
# Not all join types can be translated to a broadcast join, but this tests them to be sure we
Expand Down Expand Up @@ -376,3 +363,85 @@ def do_join(spark):
# Even though Spark does not know the size of an RDD input so it will not do a broadcast join unless
# we tell it to, this is just to be safe
assert_gpu_and_cpu_are_equal_collect(do_join, {'spark.sql.autoBroadcastJoinThreshold': '1'})

# local sort because of https://github.com/NVIDIA/spark-rapids/issues/84
# After 3.1.0 is the min spark version we can drop this
@ignore_order(local=True)
@pytest.mark.parametrize('data_gen', struct_gens, ids=idfn)
@pytest.mark.parametrize('join_type', ['Inner', 'Left', 'Right', 'Cross', 'LeftSemi', 'LeftAnti'], ids=idfn)
def test_sortmerge_join_struct_as_key(data_gen, join_type):
def do_join(spark):
left, right = create_df(spark, data_gen, 500, 250)
return left.join(right, left.a == right.r_a, join_type)
assert_gpu_and_cpu_are_equal_collect(do_join, conf=_sortmerge_join_conf)

# local sort because of https://github.com/NVIDIA/spark-rapids/issues/84
# After 3.1.0 is the min spark version we can drop this
@ignore_order(local=True)
@pytest.mark.parametrize('data_gen', struct_gens, ids=idfn)
@pytest.mark.parametrize('join_type', ['Inner', 'Left', 'Right', 'Cross', 'LeftSemi', 'LeftAnti'], ids=idfn)
def test_sortmerge_join_struct_mixed_key(data_gen, join_type):
def do_join(spark):
left = two_col_df(spark, data_gen, int_gen, length=500)
right = two_col_df(spark, data_gen, int_gen, length=500)
return left.join(right, (left.a == right.a) & (left.b == right.b), join_type)
assert_gpu_and_cpu_are_equal_collect(do_join, conf=_sortmerge_join_conf)

# local sort because of https://github.com/NVIDIA/spark-rapids/issues/84
# After 3.1.0 is the min spark version we can drop this
@ignore_order(local=True)
@pytest.mark.parametrize('data_gen', struct_gens, ids=idfn)
@pytest.mark.parametrize('join_type', ['Inner', 'Left', 'Right', 'Cross', 'LeftSemi', 'LeftAnti'], ids=idfn)
def test_sortmerge_join_struct_mixed_key_with_null_filter(data_gen, join_type):
def do_join(spark):
left = two_col_df(spark, data_gen, int_gen, length=500)
right = two_col_df(spark, data_gen, int_gen, length=500)
return left.join(right, (left.a == right.a) & (left.b == right.b), join_type)
# Disable constraintPropagation to test null filter on built table with nullable structures.
conf = {'spark.sql.constraintPropagation.enabled': 'false', **_sortmerge_join_conf}
assert_gpu_and_cpu_are_equal_collect(do_join, conf=conf)

# local sort because of https://github.com/NVIDIA/spark-rapids/issues/84
# After 3.1.0 is the min spark version we can drop this
@ignore_order(local=True)
@pytest.mark.parametrize('data_gen', struct_gens, ids=idfn)
@pytest.mark.parametrize('join_type', ['Inner', 'Left', 'Right', 'Cross', 'LeftSemi', 'LeftAnti'], ids=idfn)
def test_broadcast_join_right_struct_as_key(data_gen, join_type):
def do_join(spark):
left, right = create_df(spark, data_gen, 500, 250)
return left.join(broadcast(right), left.a == right.r_a, join_type)
assert_gpu_and_cpu_are_equal_collect(do_join, conf=allow_negative_scale_of_decimal_conf)

# local sort because of https://github.com/NVIDIA/spark-rapids/issues/84
# After 3.1.0 is the min spark version we can drop this
@ignore_order(local=True)
@pytest.mark.parametrize('data_gen', struct_gens, ids=idfn)
@pytest.mark.parametrize('join_type', ['Inner', 'Left', 'Right', 'Cross', 'LeftSemi', 'LeftAnti'], ids=idfn)
def test_broadcast_join_right_struct_mixed_key(data_gen, join_type):
def do_join(spark):
left = two_col_df(spark, data_gen, int_gen, length=500)
right = two_col_df(spark, data_gen, int_gen, length=250)
return left.join(broadcast(right), (left.a == right.a) & (left.b == right.b), join_type)
assert_gpu_and_cpu_are_equal_collect(do_join, conf=allow_negative_scale_of_decimal_conf)

# local sort because of https://github.com/NVIDIA/spark-rapids/issues/84
# After 3.1.0 is the min spark version we can drop this
@ignore_order(local=True)
@pytest.mark.xfail(reason='https://github.com/NVIDIA/spark-rapids/issues/2140')
@pytest.mark.parametrize('data_gen', [basic_struct_gen_with_floats], ids=idfn)
@pytest.mark.parametrize('join_type', ['Inner', 'Left', 'Right', 'Cross', 'LeftSemi', 'LeftAnti'], ids=idfn)
def test_sortmerge_join_struct_with_floats_key(data_gen, join_type):
def do_join(spark):
left, right = create_df(spark, data_gen, 500, 250)
return left.join(right, left.a == right.r_a, join_type)
assert_gpu_and_cpu_are_equal_collect(do_join, conf=_sortmerge_join_conf)

@allow_non_gpu('SortMergeJoinExec', 'SortExec', 'KnownFloatingPointNormalized', 'NormalizeNaNAndZero', 'CreateNamedStruct', 'GetStructField', 'Literal', 'If', 'IsNull')
@ignore_order(local=True)
@pytest.mark.parametrize('data_gen', struct_gens, ids=idfn)
@pytest.mark.parametrize('join_type', ['FullOuter'], ids=idfn)
def test_sortmerge_join_struct_as_key_fallback(data_gen, join_type):
def do_join(spark):
left, right = create_df(spark, data_gen, 500, 500)
return left.join(right, left.a == right.r_a, join_type)
assert_gpu_fallback_collect(do_join, 'SortMergeJoinExec', conf=_sortmerge_join_conf)
Original file line number Diff line number Diff line change
Expand Up @@ -151,7 +151,7 @@ case class GpuBroadcastHashJoinExec(
GpuProjectExec.project(broadcastRelation.value.batch, gpuBuildKeys)) { keys =>
val combined = GpuHashJoin.incRefCount(combine(keys, broadcastRelation.value.batch))
withResource(combined) { combined =>
GpuColumnVector.from(combined)
filterBuiltNullsIfNecessary(GpuColumnVector.from(combined))
}
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -216,17 +216,20 @@ class Spark300Shims extends SparkShims {
GpuOverrides.exec[SortMergeJoinExec](
"Sort merge join, replacing with shuffled hash join",
ExecChecks((TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL + TypeSig.ARRAY +
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL), TypeSig.all),
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL
), TypeSig.all),
(join, conf, p, r) => new GpuSortMergeJoinMeta(join, conf, p, r)),
GpuOverrides.exec[BroadcastHashJoinExec](
"Implementation of join using broadcast data",
ExecChecks((TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL + TypeSig.ARRAY +
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL), TypeSig.all),
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL
), TypeSig.all),
(join, conf, p, r) => new GpuBroadcastHashJoinMeta(join, conf, p, r)),
GpuOverrides.exec[ShuffledHashJoinExec](
"Implementation of join using hashed shuffled data",
ExecChecks((TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL + TypeSig.ARRAY +
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL), TypeSig.all),
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL
), TypeSig.all),
(join, conf, p, r) => new GpuShuffledHashJoinMeta(join, conf, p, r))
).map(r => (r.getClassFor.asSubclass(classOf[SparkPlan]), r)).toMap
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -149,7 +149,7 @@ case class GpuBroadcastHashJoinExec(
GpuProjectExec.project(broadcastRelation.value.batch, gpuBuildKeys)) { keys =>
val combined = GpuHashJoin.incRefCount(combine(keys, broadcastRelation.value.batch))
withResource(combined) { combined =>
GpuColumnVector.from(combined)
filterBuiltNullsIfNecessary(GpuColumnVector.from(combined))
}
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -46,17 +46,20 @@ class Spark301Shims extends Spark300Shims {
GpuOverrides.exec[SortMergeJoinExec](
"Sort merge join, replacing with shuffled hash join",
ExecChecks((TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL + TypeSig.ARRAY +
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL), TypeSig.all),
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL
), TypeSig.all),
(join, conf, p, r) => new GpuSortMergeJoinMeta(join, conf, p, r)),
GpuOverrides.exec[BroadcastHashJoinExec](
"Implementation of join using broadcast data",
ExecChecks((TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL + TypeSig.ARRAY +
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL), TypeSig.all),
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL
), TypeSig.all),
(join, conf, p, r) => new GpuBroadcastHashJoinMeta(join, conf, p, r)),
GpuOverrides.exec[ShuffledHashJoinExec](
"Implementation of join using hashed shuffled data",
ExecChecks((TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL + TypeSig.ARRAY +
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL), TypeSig.all),
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL
), TypeSig.all),
(join, conf, p, r) => new GpuShuffledHashJoinMeta(join, conf, p, r))
).map(r => (r.getClassFor.asSubclass(classOf[SparkPlan]), r))
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -148,7 +148,7 @@ case class GpuBroadcastHashJoinExec(
GpuProjectExec.project(broadcastRelation.value.batch, gpuBuildKeys)) { keys =>
val combined = GpuHashJoin.incRefCount(combine(keys, broadcastRelation.value.batch))
withResource(combined) { combined =>
GpuColumnVector.from(combined)
filterBuiltNullsIfNecessary(GpuColumnVector.from(combined))
}
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@ case class GpuBroadcastHashJoinExec(
GpuProjectExec.project(broadcastRelation.value.batch, gpuBuildKeys)) { keys =>
val combined = GpuHashJoin.incRefCount(combine(keys, broadcastRelation.value.batch))
withResource(combined) { combined =>
GpuColumnVector.from(combined)
filterBuiltNullsIfNecessary(GpuColumnVector.from(combined))
}
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -294,17 +294,20 @@ class Spark311Shims extends Spark301Shims {
GpuOverrides.exec[SortMergeJoinExec](
"Sort merge join, replacing with shuffled hash join",
ExecChecks((TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL + TypeSig.ARRAY +
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL), TypeSig.all),
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL
), TypeSig.all),
(join, conf, p, r) => new GpuSortMergeJoinMeta(join, conf, p, r)),
GpuOverrides.exec[BroadcastHashJoinExec](
"Implementation of join using broadcast data",
ExecChecks((TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL + TypeSig.ARRAY +
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL), TypeSig.all),
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL
), TypeSig.all),
(join, conf, p, r) => new GpuBroadcastHashJoinMeta(join, conf, p, r)),
GpuOverrides.exec[ShuffledHashJoinExec](
"Implementation of join using hashed shuffled data",
ExecChecks((TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL + TypeSig.ARRAY +
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL), TypeSig.all),
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL
), TypeSig.all),
(join, conf, p, r) => new GpuShuffledHashJoinMeta(join, conf, p, r))
).map(r => (r.getClassFor.asSubclass(classOf[SparkPlan]), r))
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2842,7 +2842,8 @@ object GpuOverrides {
exec[BroadcastExchangeExec](
"The backend for broadcast exchange of data",
ExecChecks((TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL + TypeSig.ARRAY +
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL), TypeSig.all),
TypeSig.STRUCT).nested(TypeSig.commonCudfTypes + TypeSig.NULL + TypeSig.DECIMAL)
, TypeSig.all),
(exchange, conf, p, r) => new GpuBroadcastMeta(exchange, conf, p, r)),
exec[BroadcastNestedLoopJoinExec](
"Implementation of join using brute force",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ abstract class GpuShuffledHashJoinBase(
combinedSize =
GpuColumnVector.extractColumns(combined)
.map(_.getBase.getDeviceMemorySize).sum.toInt
GpuColumnVector.from(combined)
filterBuiltNullsIfNecessary(GpuColumnVector.from(combined))
}
}
}
Expand Down
Loading

0 comments on commit 18c85a3

Please sign in to comment.