Mitosis Detection from Partial Annotation by Dataset Generation via Frame-Order Flipping (MICCAI 2023)
This is an official pytorch implementation of Mitosis Detection from Partial Annotation by Dataset Generation via Frame-Order Flipping (MICCAI 2023).
Method | L | HeLa | ES | ES-D | FIb | Ave. |
---|---|---|---|---|---|---|
Ours | 1 annot. | 0.593 | 0.740 | 0.439 | 0.440 | 0.553 |
Ours | 5 annot. | 0.795 | 0.843 | 0.628 | 0.451 | 0.610 |
Ours | F | 0.841 | 0.870 | 0.648 | 0.541 | 0.725 |
Supervised | F | 0.868 | 0.812 | 0.630 | 0.304 | 0.653 |
- Ubuntu 20.04.6 LTS
- python >= 3.6
- NVIDIA RTX A6000
conda env create -f=requirement.yml
conda activate pytorch
bash ./docker/build.sh
bash ./docker/run.sh
Please download training data and test data of "HeLa cells stably expressing H2b-GFP". Extract them under {ROOT_PATH}/original_data. Please rename test data file as Fluo-N2Dl-HeLa_test. Please run preprocessing code. The code normalize image based on max and mix value of whole seqence.
python ./pre_processing/ctc_preprocess.py --root_paht {ROOT_PATH}
${ROOT_PATH}
|- data
|-- ctc_preprocessed
|-- Fluo-N2DL-HeLa
| |-- 01
| | |- imgs
| | | |- t000.tif
| | | :
| | | L t091.tif
| | L 01_mit.txt
| |
| L 02
| |- imgs
| | |- t000.tif
| | :
| | L t091.tif
| L 02_mit.txt
L Fluo-N2DL-HeLa_test
|-- 01
L 02
For the few-shot experiments and the missing experiments, please use sampling code in pre_processing folder.
Training and test script for 4-fold cross validation on 5 seed conditions (Our experiments)
bash ./scripts/croos_train.sh
Train on one condition.
python ./scripts/cross_train.py --img_dir ./datas/ctc_preprocessed/Fluo-N2DL-HeLa\
--cv_num 0 --seed 0 --shot 5\
--save_path ./outputs/${cell_type}/${method}/shot${shot}/seed${seed}/${cv_num}\
--weight_path ./weights/${cell_type}/${method}/shot${shot}/seed${seed}/${cv_num}/best.pth\
--dataloader CVCPLoaderBrend2
If you use our code or models in your research, please cite with:
@inproceedings{Nishimura2023Mitosis,
title={Mitosis Detection from Partial Annotation by Dataset Generation via Frame-Order Flipping},
author={Nishimura, Kazuya and Katanaya, Ami and Chunma, Shinichiro and Bise, Ryoma},
booktitle={MICCAI},
year={2023}
}