Python package for extracing Mel and MFCC features from speech.
- Free software: GPL3 license
- Mel and MFCC feature extraction
To extract standard-ish MFCC features with deltas from a mono wave file:
>>> # read in the wave file >>> import wave >>> import struct >>> with wave.open("mywavfile.wav", 'r') as fid: _, _, fs, nframes, _, _ = fid.getparams() sig = np.array(struct.unpack_from("%dh" % nframes, fid.readframes(nframes))) >>> config = dict(fs=fs, scale='mel', do_dct=True, deltas=True) >>> extractor = spectral.Spectral(**config) >>> cepstra = extractor.transform(sig)
To extract 40-dimensional Bark filterbank features instead:
>>> config = dict(fs=fs, do_dct=False, scale='bark', deltas=False) >>> extractor = spectral.Spectral(**config) >>> bark_spectrum = extractor.transform(sig)
To extract the same features but first apply some noise removal:
>>> config = dict(fs=fs, do_dct=False, scale='bark', deltas=False, remove_dc=True, medfilt_t=3, medfilt_s=(11,11), noise_fr=10) >>> extractor = spectral.Spectral(**config) >>> bark_spectrum = extractor.transform(sig)