Skip to content

Commit

Permalink
REFACTOR-modin-project#4696: Merge dask and ray virtual partition code.
Browse files Browse the repository at this point in the history
Signed-off-by: mvashishtha <[email protected]>
  • Loading branch information
mvashishtha committed Aug 2, 2022
1 parent ccda567 commit 81f3c5e
Show file tree
Hide file tree
Showing 4 changed files with 301 additions and 730 deletions.
294 changes: 291 additions & 3 deletions modin/core/dataframe/pandas/partitioning/axis_partition.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,15 +22,143 @@


class PandasDataframeAxisPartition(BaseDataframeAxisPartition):

block_partition_type = None
wait = None

"""
An abstract class is created to simplify and consolidate the code for axis partition that run pandas.
Because much of the code is similar, this allows us to reuse this code.
Parameters
----------
list_of_blocks : Union[list, block_partition_type]
List of ``block_partition_type`` and
``PandasDataframeAxisPartition`` objects, or a single
``block_partition_type``.
get_ip : bool, default: False
Whether to get node IP addresses of conforming partitions or not.
full_axis : bool, default: True
Whether or not the virtual partition encompasses the whole axis.
call_queue : list, optional
A list of tuples (callable, args, kwargs) that contains deferred calls.
"""

def __init__(self, list_of_blocks, get_ip=False, full_axis=True, call_queue=None):
if isinstance(list_of_blocks, self.block_partition_type):
list_of_blocks = [list_of_blocks]
self.call_queue = call_queue or []
self.full_axis = full_axis
# In the simple case, none of the partitions that will compose this
# partition are themselves virtual partition. The partitions that will
# be combined are just the partitions as given to the constructor.
if not any(
isinstance(obj, PandasDataframeAxisPartition) for obj in list_of_blocks
):
self.list_of_partitions_to_combine = list_of_blocks
return
# Check that all axis are the same in `list_of_blocks`
# We should never have mismatching axis in the current implementation. We add this
# defensive assertion to ensure that undefined behavior does not happen.
assert (
len(
set(
obj.axis
for obj in list_of_blocks
if isinstance(obj, PandasDataframeAxisPartition)
)
)
== 1
)
# When the axis of all virtual partitions matches this axis,
# extend and combine the lists of physical partitions.
if (
next(
obj
for obj in list_of_blocks
if isinstance(obj, PandasDataframeAxisPartition)
).axis
== self.axis
):
new_list_of_blocks = []
for obj in list_of_blocks:
new_list_of_blocks.extend(
obj.list_of_partitions_to_combine
) if isinstance(
obj, PandasDataframeAxisPartition
) else new_list_of_blocks.append(
obj
)
self.list_of_partitions_to_combine = new_list_of_blocks
# Materialize partitions if the axis of this virtual does not match the virtual partitions
else:
self.list_of_partitions_to_combine = [
obj.force_materialization().list_of_partitions_to_combine[0]
if isinstance(obj, PandasDataframeAxisPartition)
else obj
for obj in list_of_blocks
]

@property
def list_of_blocks(self):
"""
Get the list of physical partition objects that compose this partition.
Returns
-------
List
A list of ``distributed.Future``.
"""
# Defer draining call queue until we get the partitions
# TODO Look into draining call queue at the same time as the task
result = [None] * len(self.list_of_partitions_to_combine)
for idx, partition in enumerate(self.list_of_partitions_to_combine):
partition.drain_call_queue()
result[idx] = partition._data
return result

@property
def list_of_ips(self):
"""
Get the IPs holding the physical objects composing this partition.
Returns
-------
List
A list of IPs as ``distributed.Future`` or str.
"""
# Defer draining call queue until we get the ip address
result = [None] * len(self.list_of_partitions_to_combine)
for idx, partition in enumerate(self.list_of_partitions_to_combine):
partition.drain_call_queue()
result[idx] = partition._ip_cache
return result

def _wrap_partitions(self, partitions):
"""
Wrap partitions passed as a list of distributed.Future with ``block_partition_type`` class.
Parameters
----------
partitions : list
List of distributed.Future.
Returns
-------
list
List of ``block_partition_type`` objects.
"""
return [
self.block_partition_type(future, length, width, ip)
for (future, length, width, ip) in zip(*[iter(partitions)] * 4)
]

def apply(
self,
func,
*args,
num_splits=None,
other_axis_partition=None,
maintain_partitioning=True,
Expand All @@ -43,6 +171,8 @@ def apply(
----------
func : callable
The function to apply.
*args : iterable
Additional positional arguments to be passed in `func`.
num_splits : int, default: None
The number of times to split the result object.
other_axis_partition : PandasDataframeAxisPartition, default: None
Expand All @@ -63,8 +193,15 @@ def apply(
list
A list of `PandasDataframePartition` objects.
"""
if num_splits is None:
if not self.full_axis:
# If this is not a full axis partition, it already contains a subset of
# the full axis, so we shouldn't split the result further.
num_splits = 1
elif num_splits is None:
num_splits = len(self.list_of_blocks)
if len(self.call_queue) > 0:
self.drain_call_queue()
kwargs["args"] = args

if other_axis_partition is not None:
if not isinstance(other_axis_partition, list):
Expand All @@ -76,7 +213,7 @@ def apply(
[0] + [len(o.list_of_blocks) for o in other_axis_partition]
)

return self._wrap_partitions(
result_partitions = self._wrap_partitions(
self.deploy_func_between_two_axis_partitions(
self.axis,
func,
Expand All @@ -96,7 +233,158 @@ def apply(
)
args = [self.axis, func, num_splits, maintain_partitioning]
args.extend(self.list_of_blocks)
return self._wrap_partitions(self.deploy_axis_func(*args, **kwargs))
result_partitions = self._wrap_partitions(
self.deploy_axis_func(*args, **kwargs)
)
if self.full_axis:
return result_partitions
else:
# If this is a full axis partition, just take out the single split in the result.
return result_partitions[0]

def force_materialization(self, get_ip=False):
"""
Materialize partitions into a single partition.
Parameters
----------
get_ip : bool, default: False
Whether to get node ip address to a single partition or not.
Returns
-------
PandasDataframeAxisPartition
An axis partition containing only a single materialized partition.
"""
materialized = super().force_materialization(get_ip=get_ip)
self.list_of_partitions_to_combine = materialized.list_of_partitions_to_combine
return materialized

def mask(self, row_indices, col_indices):
"""
Create (synchronously) a mask that extracts the indices provided.
Parameters
----------
row_indices : list-like, slice or label
The row labels for the rows to extract.
col_indices : list-like, slice or label
The column labels for the columns to extract.
Returns
-------
PandasDataframeAxisPartition
A new ``PandasDataframeAxisPartition`` object,
materialized.
"""
return (
self.force_materialization()
.list_of_partitions_to_combine[0]
.mask(row_indices, col_indices)
)

def to_pandas(self):
"""
Convert the data in this partition to a ``pandas.DataFrame``.
Returns
-------
pandas DataFrame.
"""
return self.force_materialization().list_of_partitions_to_combine[0].to_pandas()

_length_cache = None

def length(self):
"""
Get the length of this partition.
Returns
-------
int
The length of the partition.
"""
if self._length_cache is None:
if self.axis == 0:
self._length_cache = sum(
obj.length() for obj in self.list_of_partitions_to_combine
)
else:
self._length_cache = self.list_of_partitions_to_combine[0].length()
return self._length_cache

_width_cache = None

def width(self):
"""
Get the width of this partition.
Returns
-------
int
The width of the partition.
"""
if self._width_cache is None:
if self.axis == 1:
self._width_cache = sum(
obj.width() for obj in self.list_of_partitions_to_combine
)
else:
self._width_cache = self.list_of_partitions_to_combine[0].width()
return self._width_cache

def drain_call_queue(self, num_splits=None):
"""
Execute all operations stored in this partition's call queue.
Parameters
----------
num_splits : int, default: None
The number of times to split the result object.
"""

# Copy the original call queue and set it to empty so we don't try to
# drain it again when we apply().
call_queue = self.call_queue
self.call_queue = []

def drain(df):
for func, args, kwargs in call_queue:
df = func(df, *args, **kwargs)
return df

drained = self.apply(drain, num_splits=num_splits)
if not self.full_axis:
drained = [drained]
self.list_of_partitions_to_combine = drained

def add_to_apply_calls(self, func, *args, **kwargs):
"""
Add a function to the call queue.
Parameters
----------
func : callable
Function to be added to the call queue.
*args : iterable
Additional positional arguments to be passed in `func`.
**kwargs : dict
Additional keyword arguments to be passed in `func`.
Returns
-------
PandasDataframeAxisPartition
A new ``PandasDataframeAxisPartition`` object.
Notes
-----
The keyword arguments are sent as a dictionary.
"""
return type(self)(
self.list_of_partitions_to_combine,
full_axis=self.full_axis,
call_queue=self.call_queue + [(func, args, kwargs)],
)

@classmethod
def deploy_axis_func(
Expand Down
Loading

0 comments on commit 81f3c5e

Please sign in to comment.