Skip to content

Conditional calibration of conformal p-values for outlier detection.

Notifications You must be signed in to change notification settings

msesia/conditional-conformal-pvalues

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Testing for Outliers with Conformal p-values

We study the construction of p-values for nonparametric outlier detection, taking a multiple-testing perspective. The framework is that of conformal prediction, which wraps around any machine-learning algorithm to provide finite-sample guarantees regarding the validity of predictions for future testpoints. In this setting, existing methods can compute p-values that are marginally valid but mutually dependent for different future test points.

This repository contains a software implementation and guided examples for the methodology developed in the accompanying paper, which provides a new method to compute p-values that are both conditionally valid and independent of each other for different future test points, thus allowing multiple testing with stronger stronger type-I error guarantees.

"Testing for Outliers with Conformal p-values"
Stephen Bates, Emmanuel Candes, Lihua Lei, Yaniv Romano, and Matteo Sesia. 
accepted in Annals of Statistics (2022)
arXiv pre-print: https://arxiv.org/abs/2104.08279

About

Conditional calibration of conformal p-values for outlier detection.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages