Skip to content

monttj/computational-physics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

82 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Special topics in deep learning for big data

ssh access

If you have accout for server @HYU_PHY, you can access the server using the following command:

ssh -X -Y {YourID}@{ServerIP}

Environment set up

If you don't have accout, follow these steps to set up the necessary environment:

Prerequisite

  • Python == 3.6.5
  • cudnn == 7
  • cudatoolkit == 9.0

Anaconda set up

You need to install anaconda.

# download conda installation file by wget
wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh

sh Anaconda3-2022.10-Linux-x86_64.sh

# add conda path
export PATH=/opt/anaconda3/bin/:$PATH

In your conda environment, need to install tensorflow, Keras, Jupyter notebook, ipykernel. You can set up the environment using the provided 'env.yaml' file.

# create conda environment with env.yaml file
conda env create --file env.yaml
conda activate py36-cuda9.0 # this env name is set in env.yaml file.

Usage

Jupyter Notebook

Jupyter Notebook is a web-based interactive computing platform that allows you to create and share documents that contain live code, equations, visualizations, and narrative text.

To use Jupyter Notebook:

  1. At the server
conda activate py36-cuda9.0
jupyter notebook --no-browser

You should check which port number is opened for jupyter notebook.

  1. At your local computer
ssh -NL {Port}:localhost:{Port} {YourID}@{ServerIP}
  1. Open a new browser and copy and paste the url from the step 1.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published