-
Notifications
You must be signed in to change notification settings - Fork 168
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Dependency version cleanups etc. for release of version 2.0.1 #560
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -23,7 +23,7 @@ exclude = ''' | |
|
||
[tool.poetry] | ||
name = 'climate_indices' | ||
version = '2.0.0' | ||
version = '2.0.1' | ||
description = 'Reference implementations of various climate indices typically used for drought monitoring' | ||
authors = ['James Adams <[email protected]>'] | ||
readme = 'README.md' | ||
|
@@ -44,19 +44,21 @@ classifiers = [ | |
packages = [{include = 'climate_indices', from = 'src'}] | ||
|
||
[tool.poetry.dependencies] | ||
cftime = '>=1.6.2' | ||
dask = '>=2022.2.0' | ||
h5netcdf = '>=1.1.0' | ||
# only Python and scipy are required for the base library code | ||
python = '>=3.8,<3.12' | ||
scipy = '>=1.10.0' | ||
scipy = '1.10.1' | ||
# remaining dependencies are required for the CLI (console) scripts | ||
cftime = '>=1.6.4' | ||
dask = '>=2023.5.0' | ||
h5netcdf = '>=1.1.0' | ||
xarray = '>=2023.1.0' | ||
|
||
[tool.poetry.dev-dependencies] | ||
pytest = '*' | ||
pytest = '8.3.3' | ||
toml = '>=0.10.2' | ||
|
||
[tool.poetry.group.dev.dependencies] | ||
sphinx-autodoc-typehints = "^1.23.3" | ||
sphinx-autodoc-typehints = '2.0.1' | ||
|
||
[tool.poetry.scripts] | ||
process_climate_indices = 'climate_indices.__main__:main' | ||
|
@@ -66,4 +68,3 @@ spi = 'climate_indices.__spi__:main' | |
filterwarnings = [ | ||
'ignore::FutureWarning', | ||
] | ||
|
Original file line number | Diff line number | Diff line change | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
@@ -7,7 +7,7 @@ | |||||||||||||||||||||||
import logging | ||||||||||||||||||||||||
import multiprocessing | ||||||||||||||||||||||||
import os | ||||||||||||||||||||||||
from typing import Any, Dict, List | ||||||||||||||||||||||||
from typing import Any, Dict, List, Tuple | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
import numpy as np | ||||||||||||||||||||||||
import scipy.constants | ||||||||||||||||||||||||
|
@@ -563,7 +563,7 @@ def _drop_data_into_shared_arrays_grid( | |||||||||||||||||||||||
var_names: list, | ||||||||||||||||||||||||
periodicity: compute.Periodicity, | ||||||||||||||||||||||||
data_start_year: int, | ||||||||||||||||||||||||
): | ||||||||||||||||||||||||
) -> Tuple[int, ...]: | ||||||||||||||||||||||||
output_shape = None | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
# get the data arrays we'll use later in the index computations | ||||||||||||||||||||||||
|
@@ -626,9 +626,16 @@ def _drop_data_into_shared_arrays_grid( | |||||||||||||||||||||||
|
||||||||||||||||||||||||
|
||||||||||||||||||||||||
def _drop_data_into_shared_arrays_divisions( | ||||||||||||||||||||||||
dataset, | ||||||||||||||||||||||||
dataset: xr.Dataset, | ||||||||||||||||||||||||
var_names: List[str], | ||||||||||||||||||||||||
): | ||||||||||||||||||||||||
) -> Tuple[int, ...]: | ||||||||||||||||||||||||
""" | ||||||||||||||||||||||||
Drop data into shared arrays for use in the index computations. | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
:param dataset: | ||||||||||||||||||||||||
:param var_names: | ||||||||||||||||||||||||
:return: | ||||||||||||||||||||||||
""" | ||||||||||||||||||||||||
output_shape = None | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
# get the data arrays we'll use later in the index computations | ||||||||||||||||||||||||
|
@@ -874,7 +881,7 @@ def _compute_write_index(keyword_arguments): | |||||||||||||||||||||||
# TODO once we support daily Palmers then we'll need to convert values | ||||||||||||||||||||||||
# from a 366-day calendar back into a normal/Gregorian calendar | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
# get the computedPDSI data as an array of float32 values | ||||||||||||||||||||||||
# get the computed PDSI data as an array of float32 values | ||||||||||||||||||||||||
array = _global_shared_arrays[_KEY_RESULT_PDSI][_KEY_ARRAY] | ||||||||||||||||||||||||
shape = _global_shared_arrays[_KEY_RESULT_PDSI][_KEY_SHAPE] | ||||||||||||||||||||||||
pdsi = np.frombuffer(array.get_obj()).reshape(shape).astype(float) | ||||||||||||||||||||||||
|
@@ -1579,6 +1586,42 @@ def main(): # type: () -> None | |||||||||||||||||||||||
|
||||||||||||||||||||||||
arguments = parser.parse_args() | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
process_climate_indices(arguments=arguments) | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
# report the elapsed time | ||||||||||||||||||||||||
end_datetime = datetime.now() | ||||||||||||||||||||||||
_logger.info("End time: %s", end_datetime) | ||||||||||||||||||||||||
elapsed = end_datetime - start_datetime | ||||||||||||||||||||||||
_logger.info("Elapsed time: %s", elapsed) | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
except Exception: | ||||||||||||||||||||||||
_logger.exception("Failed to complete", exc_info=True) | ||||||||||||||||||||||||
raise | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
|
||||||||||||||||||||||||
def process_climate_indices( | ||||||||||||||||||||||||
arguments: argparse.Namespace, | ||||||||||||||||||||||||
) -> None: | ||||||||||||||||||||||||
""" | ||||||||||||||||||||||||
Process climate indices based on the provided arguments. | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
:param arguments: A dictionary or argparse.Namespace containing the arguments | ||||||||||||||||||||||||
:return: The results of the climate indices processing | ||||||||||||||||||||||||
""" | ||||||||||||||||||||||||
# Extract arguments | ||||||||||||||||||||||||
# index = args['index'] | ||||||||||||||||||||||||
# periodicity = args['periodicity'] | ||||||||||||||||||||||||
# scales = args['scales'] | ||||||||||||||||||||||||
# calibration_start_year = args['calibration_start_year'] | ||||||||||||||||||||||||
# calibration_end_year = args['calibration_end_year'] | ||||||||||||||||||||||||
# netcdf_precip = args['netcdf_precip'] | ||||||||||||||||||||||||
# var_name_precip = args['var_name_precip'] | ||||||||||||||||||||||||
Comment on lines
+1611
to
+1618
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. suggestion: Consider removing or updating commented-out code Commented-out code can become outdated and confusing. If this is meant as a guide for future implementation, consider adding a TODO comment explaining its purpose. Otherwise, it might be better to remove it.
Suggested change
|
||||||||||||||||||||||||
# output_file_base = args['output_file_base'] | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
# Add your existing processing logic here | ||||||||||||||||||||||||
# ... | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
try: | ||||||||||||||||||||||||
# validate the arguments and determine the input type | ||||||||||||||||||||||||
input_type = _validate_args(arguments) | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
|
@@ -1740,16 +1783,12 @@ def main(): # type: () -> None | |||||||||||||||||||||||
if netcdf_awc != arguments.netcdf_awc: | ||||||||||||||||||||||||
os.remove(netcdf_awc) | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
# report on the elapsed time | ||||||||||||||||||||||||
end_datetime = datetime.now() | ||||||||||||||||||||||||
_logger.info("End time: %s", end_datetime) | ||||||||||||||||||||||||
elapsed = end_datetime - start_datetime | ||||||||||||||||||||||||
_logger.info("Elapsed time: %s", elapsed) | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
except Exception: | ||||||||||||||||||||||||
_logger.exception("Failed to complete", exc_info=True) | ||||||||||||||||||||||||
raise | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
return None | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
|
||||||||||||||||||||||||
if __name__ == "__main__": | ||||||||||||||||||||||||
# (please do not remove -- useful for running as a script when debugging) | ||||||||||||||||||||||||
|
@@ -1777,4 +1816,50 @@ def main(): # type: () -> None | |||||||||||||||||||||||
# --calibration_start_year 1951 --calibration_end_year 2010 | ||||||||||||||||||||||||
# --multiprocessing all --periodicity monthly | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
""" | ||||||||||||||||||||||||
SYNOPSIS: | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
The main program in the provided code excerpt is designed to process climate indices on NetCDF | ||||||||||||||||||||||||
gridded datasets in parallel, leveraging Python's multiprocessing module. The process can be | ||||||||||||||||||||||||
broken down into several key steps, which together implement a quasi "map-reduce" model for parallel | ||||||||||||||||||||||||
computation. Here's an overview of how it works: | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
Step 1: Initialization and Argument Parsing | ||||||||||||||||||||||||
The program starts by parsing command-line arguments that specify the details of the computation, | ||||||||||||||||||||||||
such as the index to compute (e.g., SPI, SPEI), the input NetCDF files, and various parameters | ||||||||||||||||||||||||
relevant to the computation. It then validates these arguments to ensure they form a coherent set | ||||||||||||||||||||||||
of instructions for the computation. | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
Step 2: Setting Up Multiprocessing | ||||||||||||||||||||||||
Based on the command-line arguments, the program determines the number of worker processes to use. | ||||||||||||||||||||||||
It can use all available CPUs minus one, a single process, or all CPUs, depending on the user's choice. | ||||||||||||||||||||||||
Global shared arrays are prepared for use by worker processes. These arrays hold the input data | ||||||||||||||||||||||||
(e.g., precipitation, temperature) and the results of the computations. | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
Step 3: Data Preparation | ||||||||||||||||||||||||
The input data from NetCDF files is loaded into shared memory arrays. This step involves reading the data, | ||||||||||||||||||||||||
possibly converting units, and then distributing it across shared arrays that worker processes can access. | ||||||||||||||||||||||||
The program checks the dimensions and shapes of the input data to ensure they match expected patterns, | ||||||||||||||||||||||||
adjusting as necessary to fit the computation requirements. | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
Step 4: Parallel Computation ("Map") | ||||||||||||||||||||||||
The program splits the computation into chunks that can be processed independently. | ||||||||||||||||||||||||
This is the "map" part of the "map-reduce" model. | ||||||||||||||||||||||||
Worker processes are spawned, each taking a portion of the data from the shared arrays | ||||||||||||||||||||||||
to compute the climate index (e.g., SPI, SPEI) over that subset. | ||||||||||||||||||||||||
Each worker applies the computation function along the specified axis of the data chunk it has been given. | ||||||||||||||||||||||||
This could involve complex calculations like the Thornthwaite method for PET or statistical analysis for SPI. | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
Step 5: Aggregating Results ("Reduce") | ||||||||||||||||||||||||
Once all worker processes complete their computations, the results are aggregated back into a single dataset. Summary | ||||||||||||||||||||||||
This is the "reduce" part of the "map-reduce" model. | ||||||||||||||||||||||||
The program collects the computed indices from the shared arrays and assembles them into a coherent | ||||||||||||||||||||||||
output dataset, maintaining the correct dimensions and metadata. | ||||||||||||||||||||||||
|
||||||||||||||||||||||||
Step 6: Writing Output | ||||||||||||||||||||||||
The final step involves writing the computed indices back to NetCDF files. | ||||||||||||||||||||||||
Each index computed (e.g., SPI, SPEI, PET) is saved in its own file. | ||||||||||||||||||||||||
The program ensures that the output files contain all necessary metadata and are structured | ||||||||||||||||||||||||
correctly to be used in further analysis or visualization. | ||||||||||||||||||||||||
""" | ||||||||||||||||||||||||
main() |
Original file line number | Diff line number | Diff line change | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
@@ -43,7 +43,7 @@ def test_transform_fitted_gamma( | |||||||||||
""" | ||||||||||||
|
||||||||||||
# confirm that an input array of all NaNs results in the same array returned | ||||||||||||
all_nans = np.full(precips_mm_monthly.shape, np.NaN) | ||||||||||||
all_nans = np.full(precips_mm_monthly.shape, np.nan) | ||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. suggestion (testing): Consistent use of np.nan instead of np.NaN This change improves consistency with NumPy's preferred lowercase 'nan'. Consider updating all occurrences throughout the test suite for uniformity.
Suggested change
|
||||||||||||
computed_values = compute.transform_fitted_gamma( | ||||||||||||
all_nans, | ||||||||||||
data_year_start_monthly, | ||||||||||||
|
@@ -172,9 +172,9 @@ def test_gamma_parameters( | |||||||||||
""" | ||||||||||||
|
||||||||||||
# confirm that an input array of all NaNs results in the same array returned | ||||||||||||
all_nans = np.full(precips_mm_monthly.shape, np.NaN) | ||||||||||||
nan_alphas = np.full(shape=(12,), fill_value=np.NaN) | ||||||||||||
nan_betas = np.full(shape=(12,), fill_value=np.NaN) | ||||||||||||
all_nans = np.full(precips_mm_monthly.shape, np.nan) | ||||||||||||
nan_alphas = np.full(shape=(12,), fill_value=np.nan) | ||||||||||||
nan_betas = np.full(shape=(12,), fill_value=np.nan) | ||||||||||||
alphas, betas = compute.gamma_parameters( | ||||||||||||
all_nans, | ||||||||||||
data_year_start_monthly, | ||||||||||||
|
@@ -247,7 +247,7 @@ def test_transform_fitted_pearson( | |||||||||||
""" | ||||||||||||
|
||||||||||||
# confirm that an input array of all NaNs results in the same array returned | ||||||||||||
all_nans = np.full(precips_mm_monthly.shape, np.NaN) | ||||||||||||
all_nans = np.full(precips_mm_monthly.shape, np.nan) | ||||||||||||
computed_values = compute.transform_fitted_pearson( | ||||||||||||
all_nans, | ||||||||||||
data_year_start_monthly, | ||||||||||||
|
@@ -280,7 +280,7 @@ def test_transform_fitted_pearson( | |||||||||||
) | ||||||||||||
|
||||||||||||
# confirm that an input array of all NaNs will return the same array | ||||||||||||
all_nans = np.full(precips_mm_monthly.shape, np.NaN) | ||||||||||||
all_nans = np.full(precips_mm_monthly.shape, np.nan) | ||||||||||||
computed_values = compute.transform_fitted_pearson( | ||||||||||||
all_nans, | ||||||||||||
data_year_start_monthly, | ||||||||||||
|
@@ -524,44 +524,44 @@ def test_sum_to_scale(): | |||||||||||
# test an input array with no missing values | ||||||||||||
values = np.array([3.0, 4, 6, 2, 1, 3, 5, 8, 5]) | ||||||||||||
computed_values = compute.sum_to_scale(values, 3) | ||||||||||||
expected_values = np.array([np.NaN, np.NaN, 13, 12, 9, 6, 9, 16, 18]) | ||||||||||||
expected_values = np.array([np.nan, np.nan, 13, 12, 9, 6, 9, 16, 18]) | ||||||||||||
np.testing.assert_allclose( | ||||||||||||
computed_values, | ||||||||||||
expected_values, | ||||||||||||
err_msg=UNEXPECTED_SLIDING_SUMS_MESSAGE, | ||||||||||||
) | ||||||||||||
computed_values = compute.sum_to_scale(values, 4) | ||||||||||||
expected_values = np.array([np.NaN, np.NaN, np.NaN, 15, 13, 12, 11, 17, 21]) | ||||||||||||
expected_values = np.array([np.nan, np.nan, np.nan, 15, 13, 12, 11, 17, 21]) | ||||||||||||
np.testing.assert_allclose( | ||||||||||||
computed_values, | ||||||||||||
expected_values, | ||||||||||||
err_msg=UNEXPECTED_SLIDING_SUMS_MESSAGE, | ||||||||||||
) | ||||||||||||
|
||||||||||||
# test an input array with missing values on the end | ||||||||||||
values = np.array([3, 4, 6, 2, 1, 3, 5, 8, 5, np.NaN, np.NaN, np.NaN]) | ||||||||||||
values = np.array([3, 4, 6, 2, 1, 3, 5, 8, 5, np.nan, np.nan, np.nan]) | ||||||||||||
computed_values = compute.sum_to_scale(values, 3) | ||||||||||||
expected_values = np.array([np.NaN, np.NaN, 13, 12, 9, 6, 9, 16, 18, np.NaN, np.NaN, np.NaN]) | ||||||||||||
expected_values = np.array([np.nan, np.nan, 13, 12, 9, 6, 9, 16, 18, np.nan, np.nan, np.nan]) | ||||||||||||
np.testing.assert_allclose( | ||||||||||||
computed_values, | ||||||||||||
expected_values, | ||||||||||||
err_msg="Sliding sums not computed as expected when missing values appended to end of input array", | ||||||||||||
) | ||||||||||||
|
||||||||||||
# test an input array with missing values within the array | ||||||||||||
values = np.array([3, 4, 6, 2, 1, 3, 5, np.NaN, 8, 5, 6]) | ||||||||||||
values = np.array([3, 4, 6, 2, 1, 3, 5, np.nan, 8, 5, 6]) | ||||||||||||
computed_values = compute.sum_to_scale(values, 3) | ||||||||||||
expected_values = np.array([np.NaN, np.NaN, 13, 12, 9, 6, 9, np.NaN, np.NaN, np.NaN, 19]) | ||||||||||||
expected_values = np.array([np.nan, np.nan, 13, 12, 9, 6, 9, np.nan, np.nan, np.nan, 19]) | ||||||||||||
np.testing.assert_allclose( | ||||||||||||
computed_values, | ||||||||||||
expected_values, | ||||||||||||
err_msg="Sliding sums not computed as expected when missing values appended to end of input array", | ||||||||||||
) | ||||||||||||
|
||||||||||||
test_values = np.array([1.0, 5, 7, 2, 3, 4, 9, 6, 3, 8]) | ||||||||||||
sum_by2 = np.array([np.NaN, 6, 12, 9, 5, 7, 13, 15, 9, 11]) | ||||||||||||
sum_by4 = np.array([np.NaN, np.NaN, np.NaN, 15, 17, 16, 18, 22, 22, 26]) | ||||||||||||
sum_by6 = np.array([np.NaN, np.NaN, np.NaN, np.NaN, np.NaN, 22, 30, 31, 27, 33]) | ||||||||||||
sum_by2 = np.array([np.nan, 6, 12, 9, 5, 7, 13, 15, 9, 11]) | ||||||||||||
sum_by4 = np.array([np.nan, np.nan, np.nan, 15, 17, 16, 18, 22, 22, 26]) | ||||||||||||
sum_by6 = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, 22, 30, 31, 27, 33]) | ||||||||||||
np.testing.assert_equal( | ||||||||||||
compute.sum_to_scale(test_values, 2), | ||||||||||||
sum_by2, | ||||||||||||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -73,19 +73,19 @@ def test_eto_thornthwaite(temps_celsius, latitude_degrees, data_year_start_month | |
pytest.raises(TypeError, eto.eto_thornthwaite, temps_celsius, None, data_year_start_monthly) | ||
|
||
# make sure that an invalid latitude value (NaN) raises an error | ||
pytest.raises(ValueError, eto.eto_thornthwaite, temps_celsius, np.NaN, data_year_start_monthly) | ||
pytest.raises(ValueError, eto.eto_thornthwaite, temps_celsius, np.nan, data_year_start_monthly) | ||
|
||
|
||
# ------------------------------------------------------------------------------ | ||
def test_sunset_hour_angle(): | ||
# make sure that an invalid latitude value raises an error | ||
pytest.raises(ValueError, eto._sunset_hour_angle, np.deg2rad(-100.0), np.deg2rad(0.0)) | ||
pytest.raises(ValueError, eto._sunset_hour_angle, np.NaN, np.deg2rad(0.0)) | ||
pytest.raises(ValueError, eto._sunset_hour_angle, np.nan, np.deg2rad(0.0)) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. suggestion (testing): Consistent use of np.nan in eto tests This change improves consistency. Consider adding a test case to ensure the function handles np.nan inputs correctly, if not already present.
|
||
|
||
# make sure that an invalid solar declination angle raises an error | ||
pytest.raises(ValueError, eto._sunset_hour_angle, np.deg2rad(0.0), np.deg2rad(-75.0)) | ||
pytest.raises(ValueError, eto._sunset_hour_angle, np.deg2rad(0.0), np.deg2rad(85.0)) | ||
pytest.raises(ValueError, eto._sunset_hour_angle, np.deg2rad(0.0), np.NaN) | ||
pytest.raises(ValueError, eto._sunset_hour_angle, np.deg2rad(0.0), np.nan) | ||
|
||
expected_value = math.pi / 2 | ||
computed_value = eto._sunset_hour_angle(0.0, np.deg2rad(0.0)) | ||
|
@@ -113,7 +113,7 @@ def test_solar_declination(): | |
pytest.raises(ValueError, eto._solar_declination, -1) | ||
pytest.raises(ValueError, eto._solar_declination, 367) | ||
pytest.raises(ValueError, eto._solar_declination, 5000) | ||
pytest.raises(ValueError, eto._solar_declination, np.NaN) | ||
pytest.raises(ValueError, eto._solar_declination, np.nan) | ||
|
||
expected_value = -0.313551072399921 | ||
computed_value = eto._solar_declination(30) | ||
|
@@ -130,7 +130,7 @@ def test_daylight_hours(): | |
# make sure invalid arguments raise an error | ||
pytest.raises(ValueError, eto._daylight_hours, math.pi + 1) | ||
pytest.raises(ValueError, eto._daylight_hours, -1.0) | ||
pytest.raises(ValueError, eto._daylight_hours, np.NaN) | ||
pytest.raises(ValueError, eto._daylight_hours, np.nan) | ||
|
||
expected_value = 7.999999999999999 | ||
computed_value = eto._daylight_hours(math.pi / 3) | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
issue (complexity): Consider refactoring the main function to improve code structure and reduce complexity.
The introduction of
process_climate_indices()
increases complexity without clear benefits. To improve code structure and readability, consider fully refactoring the processing logic into this function:process_climate_indices()
.Here's a simplified example of how to restructure the code:
This structure separates concerns more clearly, reduces global state usage, and makes the flow of data and control more explicit. It's easier to understand, test, and maintain.