Capture Internet Dynamics using Prediction (kNN)
In this project, I have given a dataset of trace-route for 10 days each hour from planet lab. I have created a database in Neo4j (NoSQL data base). Due to memory, node and relationship limitation, I put the data partially. You can see the images from folder neo4j-database-images.
Then I have done visualization to see the parameter/attributes relationship among themselves. Then I have processed the given data, so that I can apply the kNN algorithm. At the end I have applied kNN algorithm.
tree of the repository ├── Code │ ├── kNN │ │ ├── euclideanDistance.py │ │ ├── kNN.py │ │ └── main.py │ ├── preprocessing │ │ ├── ip_merge.py │ │ ├── Ip-processing.py │ │ ├── merge.py │ │ └── PCA.py │ └── visualization │ ├── visual_2.py │ └── visual.py ├── NEO4J │ └── test_csv.cypher ├── neo4j-database-images │ ├── AS-has-ip-IP-info-Source-and-Edge.jpg │ ├── AS-Ip-relation-25.jpg │ ├── Edge-limit-25.jpg │ ├── neo4j_Trace_route_database.jpg │ └── source-25.jpg └── results ├── predicted_stats │ ├── result.jpeg │ └── start-stop-error.jpeg └── visualization ├── AS-id-att.jpeg ├── AS-IP.png ├── geolocation-IP.png ├── src-des-time.png └── time_visualization.png