Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

FIX-#1144: Fix read_parquet for working with HDFS #2120

Merged
merged 1 commit into from
Sep 23, 2020

Conversation

prutskov
Copy link
Contributor

@prutskov prutskov commented Sep 22, 2020

Signed-off-by: Alexey Prutskov [email protected]

What do these changes do?

@modin-bot
Copy link

modin-bot commented Sep 22, 2020

TeamCity Dask test results bot

Tests PASSed

Tests Logs
============================= test session starts ==============================
platform linux -- Python 3.8.5, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: cov-2.10.1, forked-1.2.0, xdist-2.1.0
collected 114 items

modin/pandas/test/test_io.py .................sx..........s............. [ 37%]
.....................................s..s.X.....s..................ss..  [100%]

----------- coverage: platform linux, python 3.8.5-final-0 -----------
Coverage XML written to file coverage.xml


= 105 passed, 7 skipped, 1 xfailed, 1 xpassed, 107 warnings in 77.61s (0:01:17) =
Closing remaining open files:test_write_modin.hdf...donetest_write_pandas.hdf...done
============================= test session starts ==============================
platform linux -- Python 3.8.5, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: cov-2.10.1, forked-1.2.0, xdist-2.1.0
gw0 I / gw1 I / gw2 I / gw3 I / gw4 I / gw5 I / gw6 I / gw7 I / gw8 I / gw9 I / gw10 I / gw11 I / gw12 I / gw13 I / gw14 I / gw15 I / gw16 I / gw17 I / gw18 I / gw19 I / gw20 I / gw21 I / gw22 I / gw23 I / gw24 I / gw25 I / gw26 I / gw27 I / gw28 I / gw29 I / gw30 I / gw31 I / gw32 I / gw33 I / gw34 I / gw35 I / gw36 I / gw37 I / gw38 I / gw39 I / gw40 I / gw41 I / gw42 I / gw43 I / gw44 I / gw45 I / gw46 I / gw47 I
gw0 [5406] / gw1 [5406] / gw2 [5406] / gw3 [5406] / gw4 [5406] / gw5 [5406] / gw6 [5406] / gw7 [5406] / gw8 [5406] / gw9 [5406] / gw10 [5406] / gw11 [5406] / gw12 [5406] / gw13 [5406] / gw14 [5406] / gw15 [5406] / gw16 [5406] / gw17 [5406] / gw18 [5406] / gw19 [5406] / gw20 [5406] / gw21 [5406] / gw22 [5406] / gw23 [5406] / gw24 [5406] / gw25 [5406] / gw26 [5406] / gw27 [5406] / gw28 [5406] / gw29 [5406] / gw30 [5406] / gw31 [5406] / gw32 [5406] / gw33 [5406] / gw34 [5406] / gw35 [5406] / gw36 [5406] / gw37 [5406] / gw38 [5406] / gw39 [5406] / gw40 [5406] / gw41 [5406] / gw42 [5406] / gw43 [5406] / gw44 [5406] / gw45 [5406] / gw46 [5406] / gw47 [5406]

........................................................................ [  1%]
.......................................................................... [  2%]
........................................................................ [  4%]
........................................................................ [  5%]
........................................................................ [  6%]
........................................................................ [  8%]
...................................x........s........................... [  9%]
...........X......................X.................................X..... [ 10%]
....................X.x........X........X.XX....X.............s........X. [ 12%]
.........................X.................X..............x.X.X.....X... [ 13%]
...X.................X.........X..X.....X....x....x.....X................ [ 14%]
..X.x...X.....x.....X....x..X...x...............X.....x..........x....xX [ 16%]
.......x...Xxx.xx.X.X...X..X.X.X.Xx.x..X..X..xx..........X.x..x.....xxXX [ 17%]
..x...X...X...XX.X...........Xx.x.X.....X....X...X...x..XX.xX....X...... [ 18%]
...xxx.......Xx.X...........xx......X....x.X...x.xXx.X.X....x...x....X.. [ 20%]
.X...XX.........X....x.X.X...X............................X..x........x.. [ 21%]
....X.X..X.....x...........X...........X.....X.............X............ [ 22%]
...X.....X..............................X...........................x... [ 24%]
........................................................X........x...... [ 25%]
................X...........X........X.................................. [ 26%]
..........X............................................................. [ 28%]
.............................................................x.......... [ 29%]
..............X..................X...................................... [ 30%]
........................................................................ [ 32%]
..................X........................................X............ [ 33%]
...........................X.........................................X.. [ 34%]
..................................................................X..... [ 36%]
...............................................X........................ [ 37%]
........X..........x.........................X.......................... [ 38%]
..............................................x......................... [ 40%]
.............X.........................X..X............................. [ 41%]
......................................X.................................. [ 42%]
...ss..s.s.s.s..s.ss.s..ss..............X........................s.ss..s [ 44%]
.s.s.ss..ss....ss.............X........................................... [ 45%]
x........................X.x......x...x..x.....ss...s.ss.sss..ss..x...... [ 46%]
x........................x..x................x..x..................X..xx [ 48%]
...xsx....X...X.X..........X....X..x..X...................xxx.X......... [ 49%]
X.X.....X...X...X....................x........x......................... [ 50%]
..x....XX...........x....................x............x........X..X..X.. [ 52%]
.X..X...................................ss............................... [ 53%]
...................................................s.................... [ 54%]
........................................X........x...x................... [ 56%]
.............................................................X.......... [ 57%]
............................X........................................... [ 58%]
........................................................................ [ 60%]
........................................................................ [ 61%]
..............................s.s........................................ [ 62%]
........X.............x...........X......X....X.................X...x... [ 64%]
..........X....x..........x.........x.x...X..x......x..xX..XX.XX.X...... [ 65%]
....................X.......................X........X................... [ 66%]
.....................x.X................................................ [ 68%]
........................................................................ [ 69%]
........x................x.............................................. [ 70%]
........................................................................ [ 72%]
........................................................................ [ 73%]
.....................s.......................................s...s...... [ 74%]
...............s....s....s.........x.s...................s..x.......s..s [ 76%]
.....s.......x........s...sx.....s......s...........s....s...ss.....x.s. [ 77%]
..............x..s...x.....s.......X............Xx......s..X........X.X. [ 78%]
........X..........s....X....X.X..X....XX............X......X..xXXx...X. [ 80%]
.X....X.....x...xXX..X......XX..Xx.........Xx.X.XX..X......X.x..X....... [ 81%]
XX.X.X........X.X.........x..X...x......X............................... [ 82%]
...........X...X....................X........................X.......... [ 84%]
..............X.....X.........................X.....................x... [ 85%]
......XX.....x...............................X.......................... [ 86%]
........X.....x.......X.x.x............xx..........x...x...x......x..x.. [ 88%]
.X..x..x................X..x.....................x...................... [ 89%]
........................................................................ [ 90%]
...........s......................................................x..X... [ 92%]
....X..xx.xx..X..x.x..x....................s.......Xx.......X...X....x.x [ 93%]
...X.....x...........X.XXX.Xxx.xxxxxx.x..xxX..XX.x..X.XXXXXX.XXx....x... [ 94%]
...x..xx...x.........x..............................x................... [ 96%]
.......x................................................................ [ 97%]
........................................................................ [ 98%]
.........................s....................................           [100%]error: object directory /localdisk/tc_agent/system/git/git-CE4319E5.git/objects does not exist; check .git/objects/info/alternates.
fatal: bad object HEAD
UserWarning: The Dask Engine for Modin is experimental.


----------- coverage: platform linux, python 3.8.5-final-0 -----------
Coverage XML written to file coverage.xml

= 4961 passed, 69 skipped, 156 xfailed, 220 xpassed, 11052 warnings in 128.21s (0:02:08) =
============================= test session starts ==============================
platform linux -- Python 3.8.5, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: cov-2.10.1, forked-1.2.0, xdist-2.1.0
collected 114 items

modin/pandas/test/test_io.py .................sx..........s............. [ 37%]
.....................................s..s.X.....s..................ss..  [100%]

----------- coverage: platform linux, python 3.8.5-final-0 -----------
Coverage XML written to file coverage.xml


= 105 passed, 7 skipped, 1 xfailed, 1 xpassed, 107 warnings in 77.61s (0:01:17) =
Closing remaining open files:test_write_modin.hdf...donetest_write_pandas.hdf...done
============================= test session starts ==============================
platform linux -- Python 3.8.5, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: cov-2.10.1, forked-1.2.0, xdist-2.1.0
gw0 I / gw1 I / gw2 I / gw3 I / gw4 I / gw5 I / gw6 I / gw7 I / gw8 I / gw9 I / gw10 I / gw11 I / gw12 I / gw13 I / gw14 I / gw15 I / gw16 I / gw17 I / gw18 I / gw19 I / gw20 I / gw21 I / gw22 I / gw23 I / gw24 I / gw25 I / gw26 I / gw27 I / gw28 I / gw29 I / gw30 I / gw31 I / gw32 I / gw33 I / gw34 I / gw35 I / gw36 I / gw37 I / gw38 I / gw39 I / gw40 I / gw41 I / gw42 I / gw43 I / gw44 I / gw45 I / gw46 I / gw47 I
gw0 [5406] / gw1 [5406] / gw2 [5406] / gw3 [5406] / gw4 [5406] / gw5 [5406] / gw6 [5406] / gw7 [5406] / gw8 [5406] / gw9 [5406] / gw10 [5406] / gw11 [5406] / gw12 [5406] / gw13 [5406] / gw14 [5406] / gw15 [5406] / gw16 [5406] / gw17 [5406] / gw18 [5406] / gw19 [5406] / gw20 [5406] / gw21 [5406] / gw22 [5406] / gw23 [5406] / gw24 [5406] / gw25 [5406] / gw26 [5406] / gw27 [5406] / gw28 [5406] / gw29 [5406] / gw30 [5406] / gw31 [5406] / gw32 [5406] / gw33 [5406] / gw34 [5406] / gw35 [5406] / gw36 [5406] / gw37 [5406] / gw38 [5406] / gw39 [5406] / gw40 [5406] / gw41 [5406] / gw42 [5406] / gw43 [5406] / gw44 [5406] / gw45 [5406] / gw46 [5406] / gw47 [5406]

........................................................................ [  1%]
.......................................................................... [  2%]
........................................................................ [  4%]
........................................................................ [  5%]
........................................................................ [  6%]
........................................................................ [  8%]
...................................x........s........................... [  9%]
...........X......................X.................................X..... [ 10%]
....................X.x........X........X.XX....X.............s........X. [ 12%]
.........................X.................X..............x.X.X.....X... [ 13%]
...X.................X.........X..X.....X....x....x.....X................ [ 14%]
..X.x...X.....x.....X....x..X...x...............X.....x..........x....xX [ 16%]
.......x...Xxx.xx.X.X...X..X.X.X.Xx.x..X..X..xx..........X.x..x.....xxXX [ 17%]
..x...X...X...XX.X...........Xx.x.X.....X....X...X...x..XX.xX....X...... [ 18%]
...xxx.......Xx.X...........xx......X....x.X...x.xXx.X.X....x...x....X.. [ 20%]
.X...XX.........X....x.X.X...X............................X..x........x.. [ 21%]
....X.X..X.....x...........X...........X.....X.............X............ [ 22%]
...X.....X..............................X...........................x... [ 24%]
........................................................X........x...... [ 25%]
................X...........X........X.................................. [ 26%]
..........X............................................................. [ 28%]
.............................................................x.......... [ 29%]
..............X..................X...................................... [ 30%]
........................................................................ [ 32%]
..................X........................................X............ [ 33%]
...........................X.........................................X.. [ 34%]
..................................................................X..... [ 36%]
...............................................X........................ [ 37%]
........X..........x.........................X.......................... [ 38%]
..............................................x......................... [ 40%]
.............X.........................X..X............................. [ 41%]
......................................X.................................. [ 42%]
...ss..s.s.s.s..s.ss.s..ss..............X........................s.ss..s [ 44%]
.s.s.ss..ss....ss.............X........................................... [ 45%]
x........................X.x......x...x..x.....ss...s.ss.sss..ss..x...... [ 46%]
x........................x..x................x..x..................X..xx [ 48%]
...xsx....X...X.X..........X....X..x..X...................xxx.X......... [ 49%]
X.X.....X...X...X....................x........x......................... [ 50%]
..x....XX...........x....................x............x........X..X..X.. [ 52%]
.X..X...................................ss............................... [ 53%]
...................................................s.................... [ 54%]
........................................X........x...x................... [ 56%]
.............................................................X.......... [ 57%]
............................X........................................... [ 58%]
........................................................................ [ 60%]
........................................................................ [ 61%]
..............................s.s........................................ [ 62%]
........X.............x...........X......X....X.................X...x... [ 64%]
..........X....x..........x.........x.x...X..x......x..xX..XX.XX.X...... [ 65%]
....................X.......................X........X................... [ 66%]
.....................x.X................................................ [ 68%]
........................................................................ [ 69%]
........x................x.............................................. [ 70%]
........................................................................ [ 72%]
........................................................................ [ 73%]
.....................s.......................................s...s...... [ 74%]
...............s....s....s.........x.s...................s..x.......s..s [ 76%]
.....s.......x........s...sx.....s......s...........s....s...ss.....x.s. [ 77%]
..............x..s...x.....s.......X............Xx......s..X........X.X. [ 78%]
........X..........s....X....X.X..X....XX............X......X..xXXx...X. [ 80%]
.X....X.....x...xXX..X......XX..Xx.........Xx.X.XX..X......X.x..X....... [ 81%]
XX.X.X........X.X.........x..X...x......X............................... [ 82%]
...........X...X....................X........................X.......... [ 84%]
..............X.....X.........................X.....................x... [ 85%]
......XX.....x...............................X.......................... [ 86%]
........X.....x.......X.x.x............xx..........x...x...x......x..x.. [ 88%]
.X..x..x................X..x.....................x...................... [ 89%]
........................................................................ [ 90%]
...........s......................................................x..X... [ 92%]
....X..xx.xx..X..x.x..x....................s.......Xx.......X...X....x.x [ 93%]
...X.....x...........X.XXX.Xxx.xxxxxx.x..xxX..XX.x..X.XXXXXX.XXx....x... [ 94%]
...x..xx...x.........x..............................x................... [ 96%]
.......x................................................................ [ 97%]
........................................................................ [ 98%]
.........................s....................................           [100%]error: object directory /localdisk/tc_agent/system/git/git-CE4319E5.git/objects does not exist; check .git/objects/info/alternates.
fatal: bad object HEAD
UserWarning: The Dask Engine for Modin is experimental.


----------- coverage: platform linux, python 3.8.5-final-0 -----------
Coverage XML written to file coverage.xml

= 4961 passed, 69 skipped, 156 xfailed, 220 xpassed, 11052 warnings in 128.21s (0:02:08) =

@codecov
Copy link

codecov bot commented Sep 22, 2020

Codecov Report

Merging #2120 into master will decrease coverage by 13.44%.
The diff coverage is 16.66%.

Impacted file tree graph

@@             Coverage Diff             @@
##           master    #2120       +/-   ##
===========================================
- Coverage   82.90%   69.46%   -13.45%     
===========================================
  Files         116      116               
  Lines       13013    13019        +6     
===========================================
- Hits        10788     9043     -1745     
- Misses       2225     3976     +1751     
Impacted Files Coverage Δ
...in/engines/base/io/column_stores/parquet_reader.py 85.36% <16.66%> (-11.78%) ⬇️
...engines/omnisci_on_ray/frame/calcite_serializer.py 0.00% <0.00%> (-98.69%) ⬇️
...al/engines/omnisci_on_ray/frame/calcite_builder.py 0.00% <0.00%> (-94.26%) ⬇️
modin/experimental/engines/omnisci_on_ray/io.py 0.00% <0.00%> (-93.88%) ⬇️
...al/engines/omnisci_on_ray/frame/calcite_algebra.py 0.00% <0.00%> (-92.43%) ⬇️
...rimental/engines/omnisci_on_ray/frame/partition.py 0.00% <0.00%> (-92.31%) ⬇️
...ntal/engines/omnisci_on_ray/test/test_dataframe.py 0.00% <0.00%> (-90.81%) ⬇️
.../experimental/engines/omnisci_on_ray/frame/data.py 0.00% <0.00%> (-88.63%) ⬇️
...in/experimental/backends/omnisci/query_compiler.py 0.00% <0.00%> (-86.46%) ⬇️
.../experimental/engines/omnisci_on_ray/frame/expr.py 0.00% <0.00%> (-81.60%) ⬇️
... and 20 more

Continue to review full report at Codecov.

Legend - Click here to learn more
Δ = absolute <relative> (impact), ø = not affected, ? = missing data
Powered by Codecov. Last update 7c350dd...77150c3. Read the comment docs.

@modin-bot
Copy link

modin-bot commented Sep 22, 2020

TeamCity Python test results bot

Tests PASSed

Tests Logs
============================= test session starts ==============================
platform linux -- Python 3.8.5, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: cov-2.10.1, forked-1.2.0, xdist-2.1.0
collected 114 items

modin/pandas/test/test_io.py .................sX..........s............. [ 37%]
........s............................s..s.X.....s..................ss..  [100%]

----------- coverage: platform linux, python 3.8.5-final-0 -----------
Coverage XML written to file coverage.xml


=========== 104 passed, 8 skipped, 2 xpassed, 124 warnings in 34.81s ===========
Closing remaining open files:test_write_pandas.hdf...donetest_write_modin.hdf...done
============================= test session starts ==============================
platform linux -- Python 3.8.5, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: cov-2.10.1, forked-1.2.0, xdist-2.1.0
gw0 I / gw1 I / gw2 I / gw3 I / gw4 I / gw5 I / gw6 I / gw7 I / gw8 I / gw9 I / gw10 I / gw11 I / gw12 I / gw13 I / gw14 I / gw15 I / gw16 I / gw17 I / gw18 I / gw19 I / gw20 I / gw21 I / gw22 I / gw23 I / gw24 I / gw25 I / gw26 I / gw27 I / gw28 I / gw29 I / gw30 I / gw31 I / gw32 I / gw33 I / gw34 I / gw35 I / gw36 I / gw37 I / gw38 I / gw39 I / gw40 I / gw41 I / gw42 I / gw43 I / gw44 I / gw45 I / gw46 I / gw47 I
gw0 [5406] / gw1 [5406] / gw2 [5406] / gw3 [5406] / gw4 [5406] / gw5 [5406] / gw6 [5406] / gw7 [5406] / gw8 [5406] / gw9 [5406] / gw10 [5406] / gw11 [5406] / gw12 [5406] / gw13 [5406] / gw14 [5406] / gw15 [5406] / gw16 [5406] / gw17 [5406] / gw18 [5406] / gw19 [5406] / gw20 [5406] / gw21 [5406] / gw22 [5406] / gw23 [5406] / gw24 [5406] / gw25 [5406] / gw26 [5406] / gw27 [5406] / gw28 [5406] / gw29 [5406] / gw30 [5406] / gw31 [5406] / gw32 [5406] / gw33 [5406] / gw34 [5406] / gw35 [5406] / gw36 [5406] / gw37 [5406] / gw38 [5406] / gw39 [5406] / gw40 [5406] / gw41 [5406] / gw42 [5406] / gw43 [5406] / gw44 [5406] / gw45 [5406] / gw46 [5406] / gw47 [5406]

........................................................................ [  1%]
........................................................................ [  2%]
......................................................................... [  3%]
........................................................................ [  5%]
........................................................................ [  6%]
........................................................................ [  8%]
............x..X........................................................ [  9%]
.......................x..................X....X.................s..X... [ 10%]
..............X............x................X........................... [ 12%]
.....XX......X.........X.......x........XX.............X.....X......X... [ 13%]
......X...............X.....X.........Xx...x....XX.....X.X.............. [ 14%]
.......X...X.................x......X..x......x.....X........x........xX [ 16%]
......x.X...X....x.......X.X.....X.X......X..X.x.................X.X.... [ 17%]
X...x.............x.....s...X.X..........x..x......XXX..x.XX......X...x. [ 18%]
......XX.x.................X..x..X........x...X..xX...X....x........X... [ 19%]
....x.............X..XXXXs....X......xX.....X.....X.....X.........XX.... [ 21%]
X..xX.......X....x............X...X...X......X.X.........X.....x.....X.. [ 22%]
..X..X........X..............x...............X...................X...... [ 23%]
.X........X..................x..X....x.........X..................xx.... [ 25%]
...X...X...............x.X...........x..x.........xx.................... [ 26%]
............x....x.........X...x.........................x.............. [ 27%]
...x..X.......x................x...Xx.....................X............. [ 29%]
..........x.......................x....X................X............... [ 30%]
.......X.......X..........X........Xx......xX........................... [ 31%]
.......X.....x....X...........X....X................xX.X..............s. [ 33%]
...........X.................x..............x..........X................ [ 34%]
....X...........X..........................................X...X........ [ 35%]
................x...................X...........X....................... [ 37%]
.X..................X.............................................X..... [ 38%]
..............................................X...................X..... [ 39%]
..........X.................................X........................... [ 41%]
.................................................x...................... [ 42%]
............x....................x.................................X.... [ 43%]
................................................xx...................... [ 45%]
...x.....................................x.................x..X.......... [ 46%]
..................................x..................................... [ 47%]
......................ss...x.............xx.........................ssss [ 49%]
ssssssss..........................ssssssssss.xx.....x..........sssssssss [ 50%]
ss.s....s..........................................X.................... [ 51%]
...................................................................X.... [ 53%]
...........s..........................................................X.. [ 54%]
....................................................X................... [ 55%]
........................X................X.X.....x........Xx............ [ 57%]
............................................x..........................X [ 58%]
.X...............X.x.xX..x............x..........................x..xx.. [ 59%]
..........................x........X..xX..x...........x....x....X....... [ 61%]
....x.......xx.......X.....X.xX..........X..X.x.............X.x...X..X.. [ 62%]
..........X..X.X...........s........XxXx....X..........X......X..x...... [ 63%]
......X...X....x.......................x....ss......Xx..............x... [ 65%]
.......x.......................x.......X.............X.................. [ 66%]
.X..............X....X.............X.............x................x.X.X. [ 67%]
.x..........x........................................................... [ 69%]
........................................................................ [ 70%]
........................x................................................ [ 71%]
........................................................................ [ 73%]
........................................................................ [ 74%]
........................................................................ [ 75%]
....................................s........s.....................s..s.. [ 77%]
.....s.....s......x....s..............ss..x........x..s........s...s...x [ 78%]
..sx............s...s.x..s..x.........s......s.......s........s.....s..s [ 80%]
.....................s.......X....Xs..x......XX.........x..x......X.X..X [ 81%]
x..X.......X......XX.....X...X....................X.X...X................ [ 82%]
....X..XX...................X....x...............xX....X..XX.....X....... [ 84%]
..................X................................X.X.................. [ 85%]
..............X..X...................................................... [ 86%]
....X...x.......X...X.....................................X............. [ 88%]
x...........................................X.............XX..x....X..X. [ 89%]
..x.x.x...x.....X...x..xX..X.x.x..x....X.Xx..X.x..x.X................X... [ 90%]
...........................................x.....X.....x................ [ 92%]
...............X............X.......X...............................x... [ 93%]
...............................XX.x....x.....xX..x.x.xx.......x......... [ 94%]
.x.....x..xxx..........................x..........x..................... [ 96%]
....................................x.........x......................... [ 97%]
........................................................................ [ 98%]
.............................X........................x...............   [100%]error: object directory /localdisk/tc_agent/system/git/git-CE4319E5.git/objects does not exist; check .git/objects/info/alternates.
fatal: bad object HEAD


----------- coverage: platform linux, python 3.8.5-final-0 -----------
Coverage XML written to file coverage.xml

= 4961 passed, 69 skipped, 156 xfailed, 220 xpassed, 11942 warnings in 71.66s (0:01:11) =
============================= test session starts ==============================
platform linux -- Python 3.8.5, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: cov-2.10.1, forked-1.2.0, xdist-2.1.0
collected 114 items

modin/pandas/test/test_io.py .................sX..........s............. [ 37%]
........s............................s..s.X.....s..................ss..  [100%]

----------- coverage: platform linux, python 3.8.5-final-0 -----------
Coverage XML written to file coverage.xml


=========== 104 passed, 8 skipped, 2 xpassed, 124 warnings in 34.81s ===========
Closing remaining open files:test_write_pandas.hdf...donetest_write_modin.hdf...done
============================= test session starts ==============================
platform linux -- Python 3.8.5, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: cov-2.10.1, forked-1.2.0, xdist-2.1.0
gw0 I / gw1 I / gw2 I / gw3 I / gw4 I / gw5 I / gw6 I / gw7 I / gw8 I / gw9 I / gw10 I / gw11 I / gw12 I / gw13 I / gw14 I / gw15 I / gw16 I / gw17 I / gw18 I / gw19 I / gw20 I / gw21 I / gw22 I / gw23 I / gw24 I / gw25 I / gw26 I / gw27 I / gw28 I / gw29 I / gw30 I / gw31 I / gw32 I / gw33 I / gw34 I / gw35 I / gw36 I / gw37 I / gw38 I / gw39 I / gw40 I / gw41 I / gw42 I / gw43 I / gw44 I / gw45 I / gw46 I / gw47 I
gw0 [5406] / gw1 [5406] / gw2 [5406] / gw3 [5406] / gw4 [5406] / gw5 [5406] / gw6 [5406] / gw7 [5406] / gw8 [5406] / gw9 [5406] / gw10 [5406] / gw11 [5406] / gw12 [5406] / gw13 [5406] / gw14 [5406] / gw15 [5406] / gw16 [5406] / gw17 [5406] / gw18 [5406] / gw19 [5406] / gw20 [5406] / gw21 [5406] / gw22 [5406] / gw23 [5406] / gw24 [5406] / gw25 [5406] / gw26 [5406] / gw27 [5406] / gw28 [5406] / gw29 [5406] / gw30 [5406] / gw31 [5406] / gw32 [5406] / gw33 [5406] / gw34 [5406] / gw35 [5406] / gw36 [5406] / gw37 [5406] / gw38 [5406] / gw39 [5406] / gw40 [5406] / gw41 [5406] / gw42 [5406] / gw43 [5406] / gw44 [5406] / gw45 [5406] / gw46 [5406] / gw47 [5406]

........................................................................ [  1%]
........................................................................ [  2%]
......................................................................... [  3%]
........................................................................ [  5%]
........................................................................ [  6%]
........................................................................ [  8%]
............x..X........................................................ [  9%]
.......................x..................X....X.................s..X... [ 10%]
..............X............x................X........................... [ 12%]
.....XX......X.........X.......x........XX.............X.....X......X... [ 13%]
......X...............X.....X.........Xx...x....XX.....X.X.............. [ 14%]
.......X...X.................x......X..x......x.....X........x........xX [ 16%]
......x.X...X....x.......X.X.....X.X......X..X.x.................X.X.... [ 17%]
X...x.............x.....s...X.X..........x..x......XXX..x.XX......X...x. [ 18%]
......XX.x.................X..x..X........x...X..xX...X....x........X... [ 19%]
....x.............X..XXXXs....X......xX.....X.....X.....X.........XX.... [ 21%]
X..xX.......X....x............X...X...X......X.X.........X.....x.....X.. [ 22%]
..X..X........X..............x...............X...................X...... [ 23%]
.X........X..................x..X....x.........X..................xx.... [ 25%]
...X...X...............x.X...........x..x.........xx.................... [ 26%]
............x....x.........X...x.........................x.............. [ 27%]
...x..X.......x................x...Xx.....................X............. [ 29%]
..........x.......................x....X................X............... [ 30%]
.......X.......X..........X........Xx......xX........................... [ 31%]
.......X.....x....X...........X....X................xX.X..............s. [ 33%]
...........X.................x..............x..........X................ [ 34%]
....X...........X..........................................X...X........ [ 35%]
................x...................X...........X....................... [ 37%]
.X..................X.............................................X..... [ 38%]
..............................................X...................X..... [ 39%]
..........X.................................X........................... [ 41%]
.................................................x...................... [ 42%]
............x....................x.................................X.... [ 43%]
................................................xx...................... [ 45%]
...x.....................................x.................x..X.......... [ 46%]
..................................x..................................... [ 47%]
......................ss...x.............xx.........................ssss [ 49%]
ssssssss..........................ssssssssss.xx.....x..........sssssssss [ 50%]
ss.s....s..........................................X.................... [ 51%]
...................................................................X.... [ 53%]
...........s..........................................................X.. [ 54%]
....................................................X................... [ 55%]
........................X................X.X.....x........Xx............ [ 57%]
............................................x..........................X [ 58%]
.X...............X.x.xX..x............x..........................x..xx.. [ 59%]
..........................x........X..xX..x...........x....x....X....... [ 61%]
....x.......xx.......X.....X.xX..........X..X.x.............X.x...X..X.. [ 62%]
..........X..X.X...........s........XxXx....X..........X......X..x...... [ 63%]
......X...X....x.......................x....ss......Xx..............x... [ 65%]
.......x.......................x.......X.............X.................. [ 66%]
.X..............X....X.............X.............x................x.X.X. [ 67%]
.x..........x........................................................... [ 69%]
........................................................................ [ 70%]
........................x................................................ [ 71%]
........................................................................ [ 73%]
........................................................................ [ 74%]
........................................................................ [ 75%]
....................................s........s.....................s..s.. [ 77%]
.....s.....s......x....s..............ss..x........x..s........s...s...x [ 78%]
..sx............s...s.x..s..x.........s......s.......s........s.....s..s [ 80%]
.....................s.......X....Xs..x......XX.........x..x......X.X..X [ 81%]
x..X.......X......XX.....X...X....................X.X...X................ [ 82%]
....X..XX...................X....x...............xX....X..XX.....X....... [ 84%]
..................X................................X.X.................. [ 85%]
..............X..X...................................................... [ 86%]
....X...x.......X...X.....................................X............. [ 88%]
x...........................................X.............XX..x....X..X. [ 89%]
..x.x.x...x.....X...x..xX..X.x.x..x....X.Xx..X.x..x.X................X... [ 90%]
...........................................x.....X.....x................ [ 92%]
...............X............X.......X...............................x... [ 93%]
...............................XX.x....x.....xX..x.x.xx.......x......... [ 94%]
.x.....x..xxx..........................x..........x..................... [ 96%]
....................................x.........x......................... [ 97%]
........................................................................ [ 98%]
.............................X........................x...............   [100%]error: object directory /localdisk/tc_agent/system/git/git-CE4319E5.git/objects does not exist; check .git/objects/info/alternates.
fatal: bad object HEAD


----------- coverage: platform linux, python 3.8.5-final-0 -----------
Coverage XML written to file coverage.xml

= 4961 passed, 69 skipped, 156 xfailed, 220 xpassed, 11942 warnings in 71.66s (0:01:11) =

@modin-bot
Copy link

modin-bot commented Sep 22, 2020

TeamCity Ray test results bot

Tests PASSed

Tests Logs
============================= test session starts ==============================
platform linux -- Python 3.8.5, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: cov-2.10.1, forked-1.2.0, xdist-2.1.0
collected 114 items

modin/pandas/test/test_io.py .................sx..........s............. [ 37%]
.....................................s..s.X.....s..................ss..  [100%]

----------- coverage: platform linux, python 3.8.5-final-0 -----------
Coverage XML written to file coverage.xml


= 105 passed, 7 skipped, 1 xfailed, 1 xpassed, 96 warnings in 79.13s (0:01:19) =
Closing remaining open files:test_write_modin.hdf...donetest_write_pandas.hdf...done
============================= test session starts ==============================
platform linux -- Python 3.8.5, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: cov-2.10.1, forked-1.2.0, xdist-2.1.0
gw0 I / gw1 I / gw2 I / gw3 I / gw4 I / gw5 I / gw6 I / gw7 I / gw8 I / gw9 I / gw10 I / gw11 I / gw12 I / gw13 I / gw14 I / gw15 I / gw16 I / gw17 I / gw18 I / gw19 I / gw20 I / gw21 I / gw22 I / gw23 I / gw24 I / gw25 I / gw26 I / gw27 I / gw28 I / gw29 I / gw30 I / gw31 I / gw32 I / gw33 I / gw34 I / gw35 I / gw36 I / gw37 I / gw38 I / gw39 I / gw40 I / gw41 I / gw42 I / gw43 I / gw44 I / gw45 I / gw46 I / gw47 I
[gw39] node down: Not properly terminated

replacing crashed worker gw39
[gw44] node down: Not properly terminated

replacing crashed worker gw44
gw0 [5406] / gw1 [5406] / gw2 [5406] / gw3 [5406] / gw4 [5406] / gw5 [5406] / gw6 [5406] / gw7 [5406] / gw8 [5406] / gw9 [5406] / gw10 [5406] / gw11 [5406] / gw12 [5406] / gw13 [5406] / gw14 [5406] / gw15 [5406] / gw16 [5406] / gw17 [5406] / gw18 [5406] / gw19 [5406] / gw20 [5406] / gw21 [5406] / gw22 [5406] / gw23 [5406] / gw24 [5406] / gw25 [5406] / gw26 [5406] / gw27 [5406] / gw28 [5406] / gw29 [5406] / gw30 [5406] / gw31 [5406] / gw32 [5406] / gw33 [5406] / gw34 [5406] / gw35 [5406] / gw36 [5406] / gw37 [5406] / gw38 [5406] / gw48 [5406] / gw40 [5406] / gw41 [5406] / gw42 [5406] / gw43 [5406] / gw49 [5406] / gw45 [5406] / gw46 [5406] / gw47 [5406]

........................................................................ [  1%]
........................................................................ [  2%]
.......................................................................... [  3%]
........................................................................ [  5%]
........................................................................ [  6%]
........................................................................ [  8%]
.......X..........X.......x............................................. [  9%]
..s............................X.....................x.........X........ [ 10%]
.........XX.......X.....X...............X.X..........s...........x.....X [ 12%]
..X.......................X.....X..........................XX........... [ 13%]
.X...................x...........................X..X.....X............. [ 14%]
..X.X.....X....XX.x.........X..Xxx...Xx....X.x..X.......x......x......x. [ 16%]
.....X....XX.......x.X...............X.X..........X....X.......X.X.....X [ 17%]
...x...X..X.X..............x.x.....x...x......x.x.x....x.x..........x.X. [ 18%]
.............x......xX....x.X...x.....x........XxX.........XX..Xx.X..... [ 20%]
X...Xxx........X........X..X..x..X..x..xX...X..........x.....X.xXX...... [ 21%]
........X..X..x.X.............X.X....XX...x........x....X.....x.X......X. [ 22%]
..................X............................................X......... [ 24%]
...........X.�[2m�[36m(pid=6584)�[0m error: object directory /localdisk/tc_agent/system/git/git-CE4319E5.git/objects does not exist; check .git/objects/info/alternates.
�[2m�[36m(pid=6584)�[0m fatal: bad object HEAD
......................X..X...............X............X.x.. [ 25%]
...............X............................X........................... [ 26%]
.....x.......................X......�[2m�[36m(pid=5696)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5696)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5696)�[0m 
�[2m�[36m(pid=5696)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5696)�[0m 
�[2m�[36m(pid=5696)�[0m becomes:
�[2m�[36m(pid=5696)�[0m 
�[2m�[36m(pid=5696)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5696)�[0m 
..........x........X................ [ 28%]
......X..X.....X.x....X...�[2m�[36m(pid=5761)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5761)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5761)�[0m 
�[2m�[36m(pid=5761)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5761)�[0m 
�[2m�[36m(pid=5761)�[0m becomes:
�[2m�[36m(pid=5761)�[0m 
�[2m�[36m(pid=5761)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5761)�[0m 
................�[2m�[36m(pid=5690)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5690)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m becomes:
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5690)�[0m .
..............X...xx......... [ 29%]
...................x.........................X........x................. [ 30%]
............X...................................X..x................X... [ 32%]
.........................X.................x.......................X.... [ 33%]
..........X.X........X............................X....................X [ 34%]
.........s......................................................x....X.. [ 36%]
........................................................................ [ 37%]
.................................................................s...... [ 38%]
........................................................................ [ 40%]
.X..............................X..............................X........ [ 41%]
.......................................................X................ [ 42%]
........................X............x.x..................xx............. [ 44%]
...............................xx....................................... [ 45%]
........................................................................ [ 46%]
.............................................ssssss.ssssss..s....�[2m�[36m(pid=5690)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5690)�[0m The new arguments that you should use are 'offset' or 'origin'.
....... [ 48%]
.............................s�[2m�[36m(pid=5690)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5690)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m becomes:
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5690)�[0m 
ssssssssssss............ssssssss.......�[2m�[36m(pid=1498)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=1498)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m becomes:
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=3593)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=3593)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=3593)�[0m 
�[2m�[36m(pid=3593)�[0m >>> df.resample(freq="3s", base=2).
�[2m�[36m(pid=3593)�[0m 
�[2m�[36m(pid=3593)�[0m becomes:
�[2m�[36m(pid=3593)�[0m 
�[2m�[36m(pid=3593)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=3593)�[0m .
. [ 49%]
...............................�[2m�[36m(pid=5743)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5743)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5743)�[0m 
�[2m�[36m(pid=5743)�[0m >>> df.resample(freq="3s", base=2)
.........�[2m�[36m(pid=6358)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=6358)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m >>> df.resample(freq="3s", base=2)

�[2m�[36m(pid=6358)�[0m becomes:
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=6358)�[0m 
........�[2m�[36m(pid=5743)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5743)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5743)�[0m 
�[2m�[36m(pid=5743)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5743)�[0m 
�[2m�[36m(pid=5743)�[0m becomes:
�[2m�[36m(pid=5743)�[0m 
�[2m�[36m(pid=5743)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5743)�[0m 
.................�[2m�[36m(pid=5743)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
....... [ 50%]
......�[2m�[36m(pid=5690)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5690)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m becomes:
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5690)�[0m 
......�[2m�[36m(pid=1498)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=1498)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m becomes:
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=1498)�[0m 
............................�[2m�[36m(pid=5690)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5690)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m becomes:
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5690)�[0m 
.........................�[2m�[36m(pid=1498)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=1498)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m becomes:
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=1498)�[0m 
........ [ 52%]
....x......................x..�[2m�[36m(pid=6358)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=6358)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m becomes:
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=6358)�[0m 
..s.s..................x..�[2m�[36m(pid=1498)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=1498)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m becomes:
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=1498)�[0m 
......�[2m�[36m(pid=6358)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=6358)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m becomes:
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=6358)�[0m 
.......... [ 53%]
x.............�[2m�[36m(pid=1498)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=1498)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m becomes:
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=1498)�[0m 
.......x...........x.............�[2m�[36m(pid=1498)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=1498)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m becomes:
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=1498)�[0m 
...X...............X..... [ 54%]
.......X..X........X........X..........X.X.............s...X............ [ 56%]
...............x......x................................................. [ 57%]
........................................................................ [ 58%]
......................................................................... [ 60%]
.............ss......................x.................................. [ 61%]
.......................X..........XX..X........X................X........ [ 62%]
.x......X..XX.XX.......X.....x..x.x...x.....x...xX..XXXX...X......x..... [ 64%]
.x.x.x..x........x..x......X........................................x... [ 65%]
...X.X.XX.X..X...................................X...................... [ 66%]
...........................X............................................ [ 68%]
........................................................................ [ 69%]
.x....x................................................................. [ 70%]
........................................................................ [ 72%]
........................................................................ [ 73%]
............................................................s............. [ 74%]
...s........x....s....s.....s.....s....x..........s.x..s....s......x.... [ 76%]
s.......x........s...s.....s.....sx.........s...x.....x......s.x........ [ 77%]
.s.X.s....s.s....x.......X........X....s...ss..x...X.....XX...X..XX....X [ 78%]
X....Xx.s...xXxX.....XX.XX...XXX....XX..XX..X..X..X....X...X..x.X....... [ 80%]
..X...Xx.X............XX...Xx.X.......X....X....xx...X.........X.......X [ 81%]
....X......x.......X.......x....................x.........X............. [ 82%]
.............................................X.............X.......X.... [ 84%]
X..............x........................X.......................X....... [ 85%]
..........X..........................................................x..x [ 86%]
XxX...xx.X.x.....X.......x...x...............................x.......... [ 88%]
........................s............................x.................. [ 89%]
...............x........x............................................... [ 90%]
.........................................................X.............. [ 92%]
........x...x.xx................x.......................X....xxX..xXx..x [ 93%]
.x..xX.X.X..X.X.X.......x..s.x..x...x.xx.XXX.X..........................�[2m�[36m(pid=5704)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
 [ 94%]
..x.�[2m�[36m(pid=6924)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=6924)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.....�[2m�[36m(pid=5949)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.......x.�[2m�[36m(pid=5216)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=5216)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
...�[2m�[36m(pid=5744)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
...............x.�[2m�[36m(pid=4019)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.�[2m�[36m(pid=6968)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
..�[2m�[36m(pid=3916)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=3916)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.x.x..xxx.xx..x...�[2m�[36m(pid=6553)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=5739)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
...x..X...XXXX [ 96%]
X...xx..x.....x..�[2m�[36m(pid=6855)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=6855)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
....x.................�[2m�[36m(pid=6593)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=6593)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.......x.........�[2m�[36m(pid=6393)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=6393)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
............�[2m�[36m(pid=5216)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
..�[2m�[36m(pid=6244)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.. [ 97%]
.......�[2m�[36m(pid=3221)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=3221)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
......�[2m�[36m(pid=6764)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=6764)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
...�[2m�[36m(pid=2666)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=2666)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
..................�[2m�[36m(pid=5827)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=5827)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.....................�[2m�[36m(pid=5703)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=5703)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.........�[2m�[36m(pid=6358)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
........ [ 98%]
...�[2m�[36m(pid=5713)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.......�[2m�[36m(pid=5853)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5853)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5853)�[0m 
�[2m�[36m(pid=5853)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5853)�[0m 
�[2m�[36m(pid=5853)�[0m becomes:
�[2m�[36m(pid=5853)�[0m 
�[2m�[36m(pid=5853)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5853)�[0m 
.........................................................      [100%]error: object directory /localdisk/tc_agent/system/git/git-CE4319E5.git/objects does not exist; check .git/objects/info/alternates.
fatal: bad object HEAD
�[2m�[36m(pid=382)�[0m error: object directory /localdisk/tc_agent/system/git/git-CE4319E5.git/objects does not exist; check .git/objects/info/alternates.
�[2m�[36m(pid=382)�[0m fatal: bad object HEAD


----------- coverage: platform linux, python 3.8.5-final-0 -----------
---------------------- coverage: failed workers ----------------------
The following workers failed to return coverage data, ensure that pytest-cov is installed on these workers.
gw39
gw44
Coverage XML written to file coverage.xml

= 4961 passed, 69 skipped, 156 xfailed, 220 xpassed, 11124 warnings in 118.16s (0:01:58) =
============================= test session starts ==============================
platform linux -- Python 3.8.5, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: cov-2.10.1, forked-1.2.0, xdist-2.1.0
collected 114 items

modin/pandas/test/test_io.py .................sx..........s............. [ 37%]
.....................................s..s.X.....s..................ss..  [100%]

----------- coverage: platform linux, python 3.8.5-final-0 -----------
Coverage XML written to file coverage.xml


= 105 passed, 7 skipped, 1 xfailed, 1 xpassed, 96 warnings in 79.13s (0:01:19) =
Closing remaining open files:test_write_modin.hdf...donetest_write_pandas.hdf...done
============================= test session starts ==============================
platform linux -- Python 3.8.5, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
rootdir: /modin, configfile: setup.cfg
plugins: cov-2.10.1, forked-1.2.0, xdist-2.1.0
gw0 I / gw1 I / gw2 I / gw3 I / gw4 I / gw5 I / gw6 I / gw7 I / gw8 I / gw9 I / gw10 I / gw11 I / gw12 I / gw13 I / gw14 I / gw15 I / gw16 I / gw17 I / gw18 I / gw19 I / gw20 I / gw21 I / gw22 I / gw23 I / gw24 I / gw25 I / gw26 I / gw27 I / gw28 I / gw29 I / gw30 I / gw31 I / gw32 I / gw33 I / gw34 I / gw35 I / gw36 I / gw37 I / gw38 I / gw39 I / gw40 I / gw41 I / gw42 I / gw43 I / gw44 I / gw45 I / gw46 I / gw47 I
[gw39] node down: Not properly terminated

replacing crashed worker gw39
[gw44] node down: Not properly terminated

replacing crashed worker gw44
gw0 [5406] / gw1 [5406] / gw2 [5406] / gw3 [5406] / gw4 [5406] / gw5 [5406] / gw6 [5406] / gw7 [5406] / gw8 [5406] / gw9 [5406] / gw10 [5406] / gw11 [5406] / gw12 [5406] / gw13 [5406] / gw14 [5406] / gw15 [5406] / gw16 [5406] / gw17 [5406] / gw18 [5406] / gw19 [5406] / gw20 [5406] / gw21 [5406] / gw22 [5406] / gw23 [5406] / gw24 [5406] / gw25 [5406] / gw26 [5406] / gw27 [5406] / gw28 [5406] / gw29 [5406] / gw30 [5406] / gw31 [5406] / gw32 [5406] / gw33 [5406] / gw34 [5406] / gw35 [5406] / gw36 [5406] / gw37 [5406] / gw38 [5406] / gw48 [5406] / gw40 [5406] / gw41 [5406] / gw42 [5406] / gw43 [5406] / gw49 [5406] / gw45 [5406] / gw46 [5406] / gw47 [5406]

........................................................................ [  1%]
........................................................................ [  2%]
.......................................................................... [  3%]
........................................................................ [  5%]
........................................................................ [  6%]
........................................................................ [  8%]
.......X..........X.......x............................................. [  9%]
..s............................X.....................x.........X........ [ 10%]
.........XX.......X.....X...............X.X..........s...........x.....X [ 12%]
..X.......................X.....X..........................XX........... [ 13%]
.X...................x...........................X..X.....X............. [ 14%]
..X.X.....X....XX.x.........X..Xxx...Xx....X.x..X.......x......x......x. [ 16%]
.....X....XX.......x.X...............X.X..........X....X.......X.X.....X [ 17%]
...x...X..X.X..............x.x.....x...x......x.x.x....x.x..........x.X. [ 18%]
.............x......xX....x.X...x.....x........XxX.........XX..Xx.X..... [ 20%]
X...Xxx........X........X..X..x..X..x..xX...X..........x.....X.xXX...... [ 21%]
........X..X..x.X.............X.X....XX...x........x....X.....x.X......X. [ 22%]
..................X............................................X......... [ 24%]
...........X.�[2m�[36m(pid=6584)�[0m error: object directory /localdisk/tc_agent/system/git/git-CE4319E5.git/objects does not exist; check .git/objects/info/alternates.
�[2m�[36m(pid=6584)�[0m fatal: bad object HEAD
......................X..X...............X............X.x.. [ 25%]
...............X............................X........................... [ 26%]
.....x.......................X......�[2m�[36m(pid=5696)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5696)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5696)�[0m 
�[2m�[36m(pid=5696)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5696)�[0m 
�[2m�[36m(pid=5696)�[0m becomes:
�[2m�[36m(pid=5696)�[0m 
�[2m�[36m(pid=5696)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5696)�[0m 
..........x........X................ [ 28%]
......X..X.....X.x....X...�[2m�[36m(pid=5761)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5761)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5761)�[0m 
�[2m�[36m(pid=5761)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5761)�[0m 
�[2m�[36m(pid=5761)�[0m becomes:
�[2m�[36m(pid=5761)�[0m 
�[2m�[36m(pid=5761)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5761)�[0m 
................�[2m�[36m(pid=5690)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5690)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m becomes:
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5690)�[0m .
..............X...xx......... [ 29%]
...................x.........................X........x................. [ 30%]
............X...................................X..x................X... [ 32%]
.........................X.................x.......................X.... [ 33%]
..........X.X........X............................X....................X [ 34%]
.........s......................................................x....X.. [ 36%]
........................................................................ [ 37%]
.................................................................s...... [ 38%]
........................................................................ [ 40%]
.X..............................X..............................X........ [ 41%]
.......................................................X................ [ 42%]
........................X............x.x..................xx............. [ 44%]
...............................xx....................................... [ 45%]
........................................................................ [ 46%]
.............................................ssssss.ssssss..s....�[2m�[36m(pid=5690)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5690)�[0m The new arguments that you should use are 'offset' or 'origin'.
....... [ 48%]
.............................s�[2m�[36m(pid=5690)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5690)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m becomes:
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5690)�[0m 
ssssssssssss............ssssssss.......�[2m�[36m(pid=1498)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=1498)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m becomes:
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=3593)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=3593)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=3593)�[0m 
�[2m�[36m(pid=3593)�[0m >>> df.resample(freq="3s", base=2).
�[2m�[36m(pid=3593)�[0m 
�[2m�[36m(pid=3593)�[0m becomes:
�[2m�[36m(pid=3593)�[0m 
�[2m�[36m(pid=3593)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=3593)�[0m .
. [ 49%]
...............................�[2m�[36m(pid=5743)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5743)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5743)�[0m 
�[2m�[36m(pid=5743)�[0m >>> df.resample(freq="3s", base=2)
.........�[2m�[36m(pid=6358)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=6358)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m >>> df.resample(freq="3s", base=2)

�[2m�[36m(pid=6358)�[0m becomes:
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=6358)�[0m 
........�[2m�[36m(pid=5743)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5743)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5743)�[0m 
�[2m�[36m(pid=5743)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5743)�[0m 
�[2m�[36m(pid=5743)�[0m becomes:
�[2m�[36m(pid=5743)�[0m 
�[2m�[36m(pid=5743)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5743)�[0m 
.................�[2m�[36m(pid=5743)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
....... [ 50%]
......�[2m�[36m(pid=5690)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5690)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m becomes:
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5690)�[0m 
......�[2m�[36m(pid=1498)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=1498)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m becomes:
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=1498)�[0m 
............................�[2m�[36m(pid=5690)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5690)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m becomes:
�[2m�[36m(pid=5690)�[0m 
�[2m�[36m(pid=5690)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5690)�[0m 
.........................�[2m�[36m(pid=1498)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=1498)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m becomes:
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=1498)�[0m 
........ [ 52%]
....x......................x..�[2m�[36m(pid=6358)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=6358)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m becomes:
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=6358)�[0m 
..s.s..................x..�[2m�[36m(pid=1498)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=1498)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m becomes:
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=1498)�[0m 
......�[2m�[36m(pid=6358)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=6358)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m becomes:
�[2m�[36m(pid=6358)�[0m 
�[2m�[36m(pid=6358)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=6358)�[0m 
.......... [ 53%]
x.............�[2m�[36m(pid=1498)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=1498)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m becomes:
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=1498)�[0m 
.......x...........x.............�[2m�[36m(pid=1498)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=1498)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m becomes:
�[2m�[36m(pid=1498)�[0m 
�[2m�[36m(pid=1498)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=1498)�[0m 
...X...............X..... [ 54%]
.......X..X........X........X..........X.X.............s...X............ [ 56%]
...............x......x................................................. [ 57%]
........................................................................ [ 58%]
......................................................................... [ 60%]
.............ss......................x.................................. [ 61%]
.......................X..........XX..X........X................X........ [ 62%]
.x......X..XX.XX.......X.....x..x.x...x.....x...xX..XXXX...X......x..... [ 64%]
.x.x.x..x........x..x......X........................................x... [ 65%]
...X.X.XX.X..X...................................X...................... [ 66%]
...........................X............................................ [ 68%]
........................................................................ [ 69%]
.x....x................................................................. [ 70%]
........................................................................ [ 72%]
........................................................................ [ 73%]
............................................................s............. [ 74%]
...s........x....s....s.....s.....s....x..........s.x..s....s......x.... [ 76%]
s.......x........s...s.....s.....sx.........s...x.....x......s.x........ [ 77%]
.s.X.s....s.s....x.......X........X....s...ss..x...X.....XX...X..XX....X [ 78%]
X....Xx.s...xXxX.....XX.XX...XXX....XX..XX..X..X..X....X...X..x.X....... [ 80%]
..X...Xx.X............XX...Xx.X.......X....X....xx...X.........X.......X [ 81%]
....X......x.......X.......x....................x.........X............. [ 82%]
.............................................X.............X.......X.... [ 84%]
X..............x........................X.......................X....... [ 85%]
..........X..........................................................x..x [ 86%]
XxX...xx.X.x.....X.......x...x...............................x.......... [ 88%]
........................s............................x.................. [ 89%]
...............x........x............................................... [ 90%]
.........................................................X.............. [ 92%]
........x...x.xx................x.......................X....xxX..xXx..x [ 93%]
.x..xX.X.X..X.X.X.......x..s.x..x...x.xx.XXX.X..........................�[2m�[36m(pid=5704)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
 [ 94%]
..x.�[2m�[36m(pid=6924)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=6924)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.....�[2m�[36m(pid=5949)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.......x.�[2m�[36m(pid=5216)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=5216)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
...�[2m�[36m(pid=5744)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
...............x.�[2m�[36m(pid=4019)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.�[2m�[36m(pid=6968)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
..�[2m�[36m(pid=3916)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=3916)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.x.x..xxx.xx..x...�[2m�[36m(pid=6553)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=5739)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
...x..X...XXXX [ 96%]
X...xx..x.....x..�[2m�[36m(pid=6855)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=6855)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
....x.................�[2m�[36m(pid=6593)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=6593)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.......x.........�[2m�[36m(pid=6393)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=6393)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
............�[2m�[36m(pid=5216)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
..�[2m�[36m(pid=6244)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.. [ 97%]
.......�[2m�[36m(pid=3221)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=3221)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
......�[2m�[36m(pid=6764)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=6764)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
...�[2m�[36m(pid=2666)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=2666)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
..................�[2m�[36m(pid=5827)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=5827)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.....................�[2m�[36m(pid=5703)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
�[2m�[36m(pid=5703)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.........�[2m�[36m(pid=6358)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
........ [ 98%]
...�[2m�[36m(pid=5713)�[0m FutureWarning: The `squeeze` parameter is deprecated and will be removed in a future version.
.......�[2m�[36m(pid=5853)�[0m FutureWarning: 'base' in .resample() and in Grouper() is deprecated.
�[2m�[36m(pid=5853)�[0m The new arguments that you should use are 'offset' or 'origin'.
�[2m�[36m(pid=5853)�[0m 
�[2m�[36m(pid=5853)�[0m >>> df.resample(freq="3s", base=2)
�[2m�[36m(pid=5853)�[0m 
�[2m�[36m(pid=5853)�[0m becomes:
�[2m�[36m(pid=5853)�[0m 
�[2m�[36m(pid=5853)�[0m >>> df.resample(freq="3s", offset="2s")
�[2m�[36m(pid=5853)�[0m 
.........................................................      [100%]error: object directory /localdisk/tc_agent/system/git/git-CE4319E5.git/objects does not exist; check .git/objects/info/alternates.
fatal: bad object HEAD
�[2m�[36m(pid=382)�[0m error: object directory /localdisk/tc_agent/system/git/git-CE4319E5.git/objects does not exist; check .git/objects/info/alternates.
�[2m�[36m(pid=382)�[0m fatal: bad object HEAD


----------- coverage: platform linux, python 3.8.5-final-0 -----------
---------------------- coverage: failed workers ----------------------
The following workers failed to return coverage data, ensure that pytest-cov is installed on these workers.
gw39
gw44
Coverage XML written to file coverage.xml

= 4961 passed, 69 skipped, 156 xfailed, 220 xpassed, 11124 warnings in 118.16s (0:01:58) =

@prutskov
Copy link
Contributor Author

@devin-petersohn can you review this, please?
Currently this can be tested locally only due to need an additional tools like hadoop, java. Issue related to CI-testing was created #2121.

@prutskov prutskov self-assigned this Sep 22, 2020
@prutskov prutskov added this to the 0.8.1 milestone Sep 22, 2020
elif (
isinstance(path, str)
and "://" in path
and not path.startswith(("http://", "https://"))
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is http:// or https:// handled by ParuqetFile constructor? The documentation did not say: https://arrow.apache.org/docs/python/generated/pyarrow.parquet.ParquetFile.html

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You're right. It was fixed. Now I try to handle hdfs:// beginning only.

Copy link
Collaborator

@devin-petersohn devin-petersohn left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks @prutskov, LGTM!

@devin-petersohn devin-petersohn merged commit 7105d32 into modin-project:master Sep 23, 2020
@prutskov prutskov deleted the prutskov/hdfs branch April 8, 2021 06:32
@kocmurat93
Copy link

hi ,
this topic is very important for our projects
when will you fix this problem ?
this topic is open about 1 year :)

thanks !

Murat KOÇ

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

modin.pandas.read_parquet() files from HDFS working unexpectedly as compared to pandas.read_parquet()
4 participants