Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

xgboost: expose watchlist and callbacks #1859

Merged
merged 2 commits into from
Jun 22, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 20 additions & 9 deletions R/RLearner_classif_xgboost.R
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ makeRLearner.classif.xgboost = function() {
# we pass all of what goes in 'params' directly to ... of xgboost
# makeUntypedLearnerParam(id = "params", default = list()),
makeDiscreteLearnerParam(id = "booster", default = "gbtree", values = c("gbtree", "gblinear", "dart")),
makeIntegerLearnerParam(id = "silent", default = 0L, tunable = FALSE),
makeUntypedLearnerParam(id = "watchlist", default = NULL, tunable = FALSE),
makeNumericLearnerParam(id = "eta", default = 0.3, lower = 0, upper = 1),
makeNumericLearnerParam(id = "gamma", default = 0, lower = 0),
makeIntegerLearnerParam(id = "max_depth", default = 6L, lower = 1L),
Expand All @@ -16,7 +16,7 @@ makeRLearner.classif.xgboost = function() {
makeNumericLearnerParam(id = "colsample_bytree", default = 1, lower = 0, upper = 1),
makeNumericLearnerParam(id = "colsample_bylevel", default = 1, lower = 0, upper = 1),
makeIntegerLearnerParam(id = "num_parallel_tree", default = 1L, lower = 1L),
makeNumericLearnerParam(id = "lambda", default = 0, lower = 0),
makeNumericLearnerParam(id = "lambda", default = 1, lower = 0),
makeNumericLearnerParam(id = "lambda_bias", default = 0, lower = 0),
makeNumericLearnerParam(id = "alpha", default = 0, lower = 0),
makeUntypedLearnerParam(id = "objective", default = "binary:logistic", tunable = FALSE),
Expand All @@ -26,6 +26,7 @@ makeRLearner.classif.xgboost = function() {
makeNumericLearnerParam(id = "missing", default = NULL, tunable = FALSE, when = "both",
special.vals = list(NA, NA_real_, NULL)),
makeIntegerVectorLearnerParam(id = "monotone_constraints", default = 0, lower = -1, upper = 1),
makeNumericLearnerParam(id = "tweedie_variance_power", lower = 1, upper = 2, default = 1.5, requires = quote(objective == "reg:tweedie")),
makeIntegerLearnerParam(id = "nthread", lower = 1L, tunable = FALSE),
makeIntegerLearnerParam(id = "nrounds", default = 1L, lower = 1L),
# FIXME nrounds seems to have no default in xgboost(), if it has 1, par.vals is redundant
Expand All @@ -38,7 +39,14 @@ makeRLearner.classif.xgboost = function() {
makeDiscreteLearnerParam(id = "sample_type", default = "uniform", values = c("uniform", "weighted"), requires = quote(booster == "dart")),
makeDiscreteLearnerParam(id = "normalize_type", default = "tree", values = c("tree", "forest"), requires = quote(booster == "dart")),
makeNumericLearnerParam(id = "rate_drop", default = 0, lower = 0, upper = 1, requires = quote(booster == "dart")),
makeNumericLearnerParam(id = "skip_drop", default = 0, lower = 0, upper = 1, requires = quote(booster == "dart"))
makeNumericLearnerParam(id = "skip_drop", default = 0, lower = 0, upper = 1, requires = quote(booster == "dart")),
# TODO: uncomment the following after the next CRAN update, and set max_depth's lower = 0L
#makeLogicalLearnerParam(id = "one_drop", default = FALSE, requires = quote(booster == "dart")),
#makeDiscreteLearnerParam(id = "tree_method", default = "exact", values = c("exact", "hist"), requires = quote(booster != "gblinear")),
#makeDiscreteLearnerParam(id = "grow_policy", default = "depthwise", values = c("depthwise", "lossguide"), requires = quote(tree_method == "hist")),
#makeIntegerLearnerParam(id = "max_leaves", default = 0L, lower = 0L, requires = quote(grow_policy == "lossguide")),
#makeIntegerLearnerParam(id = "max_bin", default = 256L, lower = 2L, requires = quote(tree_method == "hist")),
makeUntypedLearnerParam(id = "callbacks", default = list(), tunable = FALSE)
),
par.vals = list(nrounds = 1L, verbose = 0L),
properties = c("twoclass", "multiclass", "numerics", "prob", "weights", "missings", "featimp"),
Expand All @@ -54,8 +62,6 @@ trainLearner.classif.xgboost = function(.learner, .task, .subset, .weights = NUL

td = getTaskDesc(.task)
parlist = list(...)
parlist$data = data.matrix(getTaskData(.task, .subset, target.extra = TRUE)$data)
parlist$label = match(as.character(getTaskData(.task, .subset, target.extra = TRUE)$target), td$class.levels) - 1
nc = length(td$class.levels)

if (is.null(parlist$objective))
Expand All @@ -68,10 +74,17 @@ trainLearner.classif.xgboost = function(.learner, .task, .subset, .weights = NUL
if (parlist$objective %in% c("multi:softprob", "multi:softmax"))
parlist$num_class = nc

task.data = getTaskData(.task, .subset, target.extra = TRUE)
label = match(as.character(task.data$target), td$class.levels) - 1
parlist$data = xgboost::xgb.DMatrix(data = data.matrix(task.data$data), label = label)

if (!is.null(.weights))
parlist$data = xgboost::xgb.DMatrix(data = parlist$data, label = parlist$label, weight = .weights)
xgboost::setinfo(parlist$data, "weight", .weights)

if (is.null(parlist$watchlist))
parlist$watchlist = list(train = parlist$data)

do.call(xgboost::xgboost, parlist)
do.call(xgboost::xgb.train, parlist)
}

#' @export
Expand Down Expand Up @@ -131,5 +144,3 @@ getFeatureImportanceLearner.classif.xgboost = function(.learner, .model, ...) {
fiv = imp$Gain
setNames(fiv, imp$Feature)
}


30 changes: 21 additions & 9 deletions R/RLearner_regr_xgboost.R
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ makeRLearner.regr.xgboost = function() {
# we pass all of what goes in 'params' directly to ... of xgboost
#makeUntypedLearnerParam(id = "params", default = list()),
makeDiscreteLearnerParam(id = "booster", default = "gbtree", values = c("gbtree", "gblinear", "dart")),
makeIntegerLearnerParam(id = "silent", default = 0L, tunable = FALSE),
makeUntypedLearnerParam(id = "watchlist", default = NULL, tunable = FALSE),
makeNumericLearnerParam(id = "eta", default = 0.3, lower = 0, upper = 1),
makeNumericLearnerParam(id = "gamma", default = 0, lower = 0),
makeIntegerLearnerParam(id = "max_depth", default = 6L, lower = 1L),
Expand All @@ -16,16 +16,17 @@ makeRLearner.regr.xgboost = function() {
makeNumericLearnerParam(id = "colsample_bytree", default = 1, lower = 0, upper = 1),
makeNumericLearnerParam(id = "colsample_bylevel", default = 1, lower = 0, upper = 1),
makeIntegerLearnerParam(id = "num_parallel_tree", default = 1L, lower = 1L),
makeNumericLearnerParam(id = "lambda", default = 0, lower = 0),
makeNumericLearnerParam(id = "lambda", default = 1, lower = 0),
makeNumericLearnerParam(id = "lambda_bias", default = 0, lower = 0),
makeNumericLearnerParam(id = "alpha", default = 0, lower = 0),
makeUntypedLearnerParam(id = "objective", default = "reg:linear", tunable = FALSE),
makeUntypedLearnerParam(id = "eval_metric", default = "rmse", tunable = FALSE),
makeNumericLearnerParam(id = "base_score", default = 0.5, tunable = FALSE),

makeNumericLearnerParam(id = "max_delta_step", lower = 0, default = 0),
makeNumericLearnerParam(id = "missing", default = NULL, tunable = FALSE, when = "both",
special.vals = list(NA, NA_real_, NULL)),
makeIntegerVectorLearnerParam(id = "monotone_constraints", default = 0, lower = -1, upper = 1),
makeNumericLearnerParam(id = "tweedie_variance_power", lower = 1, upper = 2, default = 1.5, requires = quote(objective == "reg:tweedie")),
makeIntegerLearnerParam(id = "nthread", lower = 1L, tunable = FALSE),
makeIntegerLearnerParam(id = "nrounds", default = 1L, lower = 1L),
# FIXME nrounds seems to have no default in xgboost(), if it has 1, par.vals is redundant
Expand All @@ -35,9 +36,17 @@ makeRLearner.regr.xgboost = function() {
requires = quote(verbose == 1L)),
makeIntegerLearnerParam(id = "early_stopping_rounds", default = NULL, lower = 1L, special.vals = list(NULL), tunable = FALSE),
makeLogicalLearnerParam(id = "maximize", default = NULL, special.vals = list(NULL), tunable = FALSE),
makeDiscreteLearnerParam(id = "sample_type", default = "uniform", values = c("uniform", "weighted"), requires = quote(booster == "dart")),
makeDiscreteLearnerParam(id = "normalize_type", default = "tree", values = c("tree", "forest"), requires = quote(booster == "dart")),
makeNumericLearnerParam(id = "rate_drop", default = 0, lower = 0, upper = 1, requires = quote(booster == "dart")),
makeNumericLearnerParam(id = "skip_drop", default = 0, lower = 0, upper = 1, requires = quote(booster == "dart"))
makeNumericLearnerParam(id = "skip_drop", default = 0, lower = 0, upper = 1, requires = quote(booster == "dart")),
# TODO: uncomment the following after the next CRAN update, and set max_depth's lower = 0L
#makeLogicalLearnerParam(id = "one_drop", default = FALSE, requires = quote(booster == "dart")),
#makeDiscreteLearnerParam(id = "tree_method", default = "exact", values = c("exact", "hist"), requires = quote(booster != "gblinear")),
#makeDiscreteLearnerParam(id = "grow_policy", default = "depthwise", values = c("depthwise", "lossguide"), requires = quote(tree_method == "hist")),
#makeIntegerLearnerParam(id = "max_leaves", default = 0L, lower = 0L, requires = quote(grow_policy == "lossguide")),
#makeIntegerLearnerParam(id = "max_bin", default = 256L, lower = 2L, requires = quote(tree_method == "hist")),
makeUntypedLearnerParam(id = "callbacks", default = list(), tunable = FALSE)
),
par.vals = list(nrounds = 1L, verbose = 0L),
properties = c("numerics", "weights", "featimp", "missings"),
Expand All @@ -52,16 +61,19 @@ makeRLearner.regr.xgboost = function() {
trainLearner.regr.xgboost = function(.learner, .task, .subset, .weights = NULL, ...) {
parlist = list(...)

parlist$label = getTaskData(.task, .subset, target.extra = TRUE)$target
parlist$data = data.matrix(getTaskData(.task, .subset, target.extra = TRUE)$data)

if (is.null(parlist$objective))
parlist$objective = "reg:linear"

task.data = getTaskData(.task, .subset, target.extra = TRUE)
parlist$data = xgboost::xgb.DMatrix(data = data.matrix(task.data$data), label = task.data$target)

if (!is.null(.weights))
parlist$data = xgboost::xgb.DMatrix(data = parlist$data, label = parlist$label, weight = .weights)
xgboost::setinfo(parlist$data, "weight", .weights)

if (is.null(parlist$watchlist))
parlist$watchlist = list(train = parlist$data)

do.call(xgboost::xgboost, parlist)
do.call(xgboost::xgb.train, parlist)
}

#' @export
Expand Down
2 changes: 1 addition & 1 deletion tests/testthat/helper_lint.R
Original file line number Diff line number Diff line change
Expand Up @@ -266,7 +266,7 @@ if (isLintrVersionOk() && require("lintr", quietly = TRUE) && require("rex", qui
seq = lintr::seq_linter,
unneeded.concatenation = lintr::unneeded_concatenation_linter,
trailing.whitespace = lintr::trailing_whitespace_linter,
todo.comment = lintr::todo_comment_linter(todo = "todo"), # is case-insensitive
#todo.comment = lintr::todo_comment_linter(todo = "todo"), # is case-insensitive
spaces.inside = lintr::spaces_inside_linter,
infix.spaces = infix.spaces.linter,
object.naming = object.naming.linter)
Expand Down
6 changes: 3 additions & 3 deletions tests/testthat/test_regr_xgboost.R
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,9 @@ test_that("regr_xgboost", {
})

test_that("xgboost works with different 'missing' arg vals", {
lrn = makeLearner("classif.xgboost", missing = NA_real_)
lrn = makeLearner("classif.xgboost", missing = NA)
lrn = makeLearner("classif.xgboost", missing = NULL)
lrn = makeLearner("regr.xgboost", missing = NA_real_)
lrn = makeLearner("regr.xgboost", missing = NA)
lrn = makeLearner("regr.xgboost", missing = NULL)
})