Skip to content

Commit

Permalink
Fixed more issues
Browse files Browse the repository at this point in the history
  • Loading branch information
mleprovost committed Jan 10, 2024
1 parent 1acce90 commit 64b87cf
Show file tree
Hide file tree
Showing 2 changed files with 66 additions and 66 deletions.
60 changes: 30 additions & 30 deletions test/hermitemap/expandedfunction2.jl
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ using TransportBasedInference: evaluate


for j=1:
fj = MultiFunction(MultiBasis(f.B.B,Nx-1), f.idx[j,1:Nx-1])
fj = MultiFunction(MultiBasis(f.MB.B,Nx-1), f.idx[j,1:Nx-1])
for i=1:Ne
ψofft[i,j] += fj(X[:,i][1:end-1])
end
Expand All @@ -49,7 +49,7 @@ using TransportBasedInference: evaluate


for j=1:
fj = MultiFunction(MultiBasis(f.B.B,1), f.idx[j,Nx:Nx])
fj = MultiFunction(MultiBasis(f.MB.B,1), f.idx[j,Nx:Nx])
for i=1:Ne
ψdiagt[i,j] += fj([X[:,i][end]])
end
Expand All @@ -65,7 +65,7 @@ using TransportBasedInference: evaluate
Gψ_xd_diagt = zeros(Ne, Nψ)

for j=1:
fj = f.B.B[f.idx[j,end]+1]
fj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
Gψ_xd_diagt[i,j] += ForwardDiff.derivative(fj, X[:,i][end])
end
Expand All @@ -82,7 +82,7 @@ using TransportBasedInference: evaluate
Hψ_xd_diagt = zeros(Ne, Nψ)

for j=1:
fj = f.B.B[f.idx[j,end]+1]
fj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
Hψ_xd_diagt[i,j] += ForwardDiff.derivative(x->ForwardDiff.derivative(fj, x), X[:,i][end])
end
Expand Down Expand Up @@ -137,8 +137,8 @@ using TransportBasedInference: evaluate
dψ_coeff_xdt = zeros(Ne, Nψ)

for j=1:
foffj = MultiFunction(MultiBasis(f.B.B,Nx-1), f.idx[j,1:end-1])
fdiagj = f.B.B[f.idx[j,end]+1]
foffj = MultiFunction(MultiBasis(f.MB.B,Nx-1), f.idx[j,1:end-1])
fdiagj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
dψ_coeff_xdt[i,j] = foffj(X[:,i][1:end-1])*ForwardDiff.derivative(fdiagj, X[:,i][end])
end
Expand Down Expand Up @@ -177,7 +177,7 @@ end


for j=1:
fj = MultiFunction(MultiBasis(f.B.B,Nx-1), f.idx[j,1:Nx-1])
fj = MultiFunction(MultiBasis(f.MB.B,Nx-1), f.idx[j,1:Nx-1])
for i=1:Ne
ψofft[i,j] += fj(X[:,i][1:end-1])
end
Expand All @@ -197,7 +197,7 @@ end


for j=1:
fj = MultiFunction(MultiBasis(f.B.B,1), f.idx[j,Nx:Nx])
fj = MultiFunction(MultiBasis(f.MB.B,1), f.idx[j,Nx:Nx])
for i=1:Ne
ψdiagt[i,j] += fj([X[:,i][end]])
end
Expand All @@ -213,7 +213,7 @@ end
Gψ_xd_diagt = zeros(Ne, Nψ)

for j=1:
fj = f.B.B[f.idx[j,end]+1]
fj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
Gψ_xd_diagt[i,j] += ForwardDiff.derivative(fj, X[:,i][end])
end
Expand All @@ -230,7 +230,7 @@ end
Hψ_xd_diagt = zeros(Ne, Nψ)

for j=1:
fj = f.B.B[f.idx[j,end]+1]
fj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
Hψ_xd_diagt[i,j] += ForwardDiff.derivative(x->ForwardDiff.derivative(fj, x), X[:,i][end])
end
Expand Down Expand Up @@ -285,8 +285,8 @@ end
dψ_coeff_xdt = zeros(Ne, Nψ)

for j=1:
foffj = MultiFunction(MultiBasis(f.B.B,Nx-1), f.idx[j,1:end-1])
fdiagj = f.B.B[f.idx[j,end]+1]
foffj = MultiFunction(MultiBasis(f.MB.B,Nx-1), f.idx[j,1:end-1])
fdiagj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
dψ_coeff_xdt[i,j] = foffj(X[:,i][1:end-1])*ForwardDiff.derivative(fdiagj, X[:,i][end])
end
Expand Down Expand Up @@ -327,7 +327,7 @@ end


for j=1:
fj = MultiFunction(MultiBasis(f.B.B,Nx-1), f.idx[j,1:Nx-1])
fj = MultiFunction(MultiBasis(f.MB.B,Nx-1), f.idx[j,1:Nx-1])
for i=1:Ne
ψofft[i,j] += fj(X[:,i][1:end-1])
end
Expand All @@ -347,7 +347,7 @@ end


for j=1:
fj = MultiFunction(MultiBasis(f.B.B,1), f.idx[j,Nx:Nx])
fj = MultiFunction(MultiBasis(f.MB.B,1), f.idx[j,Nx:Nx])
for i=1:Ne
ψdiagt[i,j] += fj([X[:,i][end]])
end
Expand All @@ -363,7 +363,7 @@ end
Gψ_xd_diagt = zeros(Ne, Nψ)

for j=1:
fj = f.B.B[f.idx[j,end]+1]
fj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
Gψ_xd_diagt[i,j] += ForwardDiff.derivative(fj, X[:,i][end])
end
Expand All @@ -380,7 +380,7 @@ end
Hψ_xd_diagt = zeros(Ne, Nψ)

for j=1:
fj = f.B.B[f.idx[j,end]+1]
fj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
Hψ_xd_diagt[i,j] += ForwardDiff.derivative(x->ForwardDiff.derivative(fj, x), X[:,i][end])
end
Expand Down Expand Up @@ -435,8 +435,8 @@ end
dψ_coeff_xdt = zeros(Ne, Nψ)

for j=1:
foffj = MultiFunction(MultiBasis(f.B.B,Nx-1), f.idx[j,1:end-1])
fdiagj = f.B.B[f.idx[j,end]+1]
foffj = MultiFunction(MultiBasis(f.MB.B,Nx-1), f.idx[j,1:end-1])
fdiagj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
dψ_coeff_xdt[i,j] = foffj(X[:,i][1:end-1])*ForwardDiff.derivative(fdiagj, X[:,i][end])
end
Expand Down Expand Up @@ -477,7 +477,7 @@ end


for j=1:
fj = MultiFunction(MultiBasis(f.B.B,Nx-1), f.idx[j,1:Nx-1])
fj = MultiFunction(MultiBasis(f.MB.B,Nx-1), f.idx[j,1:Nx-1])
for i=1:Ne
ψofft[i,j] += fj(X[:,i][1:end-1])
end
Expand All @@ -497,7 +497,7 @@ end


for j=1:
fj = MultiFunction(MultiBasis(f.B.B,1), f.idx[j,Nx:Nx])
fj = MultiFunction(MultiBasis(f.MB.B,1), f.idx[j,Nx:Nx])
for i=1:Ne
ψdiagt[i,j] += fj([X[:,i][end]])
end
Expand All @@ -513,7 +513,7 @@ end
Gψ_xd_diagt = zeros(Ne, Nψ)

for j=1:
fj = f.B.B[f.idx[j,end]+1]
fj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
Gψ_xd_diagt[i,j] += ForwardDiff.derivative(fj, X[:,i][end])
end
Expand All @@ -530,7 +530,7 @@ end
Hψ_xd_diagt = zeros(Ne, Nψ)

for j=1:
fj = f.B.B[f.idx[j,end]+1]
fj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
Hψ_xd_diagt[i,j] += ForwardDiff.derivative(x->ForwardDiff.derivative(fj, x), X[:,i][end])
end
Expand Down Expand Up @@ -585,8 +585,8 @@ end
dψ_coeff_xdt = zeros(Ne, Nψ)

for j=1:
foffj = MultiFunction(MultiBasis(f.B.B,Nx-1), f.idx[j,1:end-1])
fdiagj = f.B.B[f.idx[j,end]+1]
foffj = MultiFunction(MultiBasis(f.MB.B,Nx-1), f.idx[j,1:end-1])
fdiagj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
dψ_coeff_xdt[i,j] = foffj(X[:,i][1:end-1])*ForwardDiff.derivative(fdiagj, X[:,i][end])
end
Expand Down Expand Up @@ -624,7 +624,7 @@ end


for j=1:
fj = MultiFunction(MultiBasis(f.B.B,Nx-1), f.idx[j,1:Nx-1])
fj = MultiFunction(MultiBasis(f.MB.B,Nx-1), f.idx[j,1:Nx-1])
for i=1:Ne
ψofft[i,j] += fj(X[:,i][1:end-1])
end
Expand All @@ -644,7 +644,7 @@ end


for j=1:
fj = MultiFunction(MultiBasis(f.B.B,1), f.idx[j,Nx:Nx])
fj = MultiFunction(MultiBasis(f.MB.B,1), f.idx[j,Nx:Nx])
for i=1:Ne
ψdiagt[i,j] += fj([X[:,i][end]])
end
Expand All @@ -660,7 +660,7 @@ end
Gψ_xd_diagt = zeros(Ne, Nψ)

for j=1:
fj = f.B.B[f.idx[j,end]+1]
fj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
Gψ_xd_diagt[i,j] += ForwardDiff.derivative(fj, X[:,i][end])
end
Expand All @@ -677,7 +677,7 @@ end
Hψ_xd_diagt = zeros(Ne, Nψ)

for j=1:
fj = f.B.B[f.idx[j,end]+1]
fj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
Hψ_xd_diagt[i,j] += ForwardDiff.derivative(x->ForwardDiff.derivative(fj, x), X[:,i][end])
end
Expand Down Expand Up @@ -732,8 +732,8 @@ end
dψ_coeff_xdt = zeros(Ne, Nψ)

for j=1:
foffj = MultiFunction(MultiBasis(f.B.B,Nx-1), f.idx[j,1:end-1])
fdiagj = f.B.B[f.idx[j,end]+1]
foffj = MultiFunction(MultiBasis(f.MB.B,Nx-1), f.idx[j,1:end-1])
fdiagj = f.MB.B[f.idx[j,end]+1]
for i=1:Ne
dψ_coeff_xdt[i,j] = foffj(X[:,i][1:end-1])*ForwardDiff.derivative(fdiagj, X[:,i][end])
end
Expand Down
Loading

0 comments on commit 64b87cf

Please sign in to comment.