Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[2.4] support the report value in the dml and dql request #2092

Merged
merged 1 commit into from
May 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
187 changes: 187 additions & 0 deletions examples/hello_cost.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
# hello_milvus.py demonstrates the basic operations of PyMilvus, a Python SDK of Milvus.
# 1. connect to Milvus
# 2. create collection
# 3. insert data
# 4. create index
# 5. search, query, and hybrid search on entities
# 6. delete entities by PK
# 7. drop collection
import time

import numpy as np
from pymilvus import (
connections,
utility,
FieldSchema, CollectionSchema, DataType,
Collection,
)

fmt = "\n=== {:30} ===\n"
search_latency_fmt = "search latency = {:.4f}s"
num_entities, dim = 10, 8

#################################################################################
# 1. connect to Milvus
# Add a new connection alias `default` for Milvus server in `localhost:19530`
# Actually the "default" alias is a buildin in PyMilvus.
# If the address of Milvus is the same as `localhost:19530`, you can omit all
# parameters and call the method as: `connections.connect()`.
#
# Note: the `using` parameter of the following methods is default to "default".
print(fmt.format("start connecting to Milvus"))
connections.connect("default", host="localhost", port="19530")

collection_name = "hello_cost"
has = utility.has_collection(collection_name)
print(f"Does collection {collection_name} exist in Milvus: {has}")

#################################################################################
# 2. create collection
# We're going to create a collection with 3 fields.
# +-+------------+------------+------------------+------------------------------+
# | | field name | field type | other attributes | field description |
# +-+------------+------------+------------------+------------------------------+
# |1| "pk" | VarChar | is_primary=True | "primary field" |
# | | | | auto_id=False | |
# +-+------------+------------+------------------+------------------------------+
# |2| "random" | Double | | "a double field" |
# +-+------------+------------+------------------+------------------------------+
# |3|"embeddings"| FloatVector| dim=8 | "float vector with dim 8" |
# +-+------------+------------+------------------+------------------------------+
fields = [
FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100),
FieldSchema(name="random", dtype=DataType.DOUBLE),
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)
]

schema = CollectionSchema(fields, f"{collection_name} is the simplest demo to introduce the APIs")

print(fmt.format(f"Create collection `{collection_name}`"))
hello_milvus = Collection(collection_name, schema, consistency_level="Strong")

################################################################################
# 3. insert data
# We are going to insert 3000 rows of data into `hello_milvus`
# Data to be inserted must be organized in fields.
#
# The insert() method returns:
# - either automatically generated primary keys by Milvus if auto_id=True in the schema;
# - or the existing primary key field from the entities if auto_id=False in the schema.

print(fmt.format("Start inserting entities"))
rng = np.random.default_rng(seed=19530)
entities = [
# provide the pk field because `auto_id` is set to False
[str(i) for i in range(num_entities)],
rng.random(num_entities).tolist(), # field random, only supports list
rng.random((num_entities, dim)), # field embeddings, supports numpy.ndarray and list
]

insert_result = hello_milvus.insert(entities)
# OUTPUT:
# insert result: (insert count: 10, delete count: 0, upsert count: 0, timestamp: 449296288881311748, success count: 10, err count: 0, cost: 1);
# insert cost: 1
print(f"insert result: {insert_result};\ninsert cost: {insert_result.cost}")

hello_milvus.flush()
print(f"Number of entities in Milvus: {hello_milvus.num_entities}") # check the num_entities

################################################################################
# 4. create index
# We are going to create an IVF_FLAT index for hello_milvus collection.
# create_index() can only be applied to `FloatVector` and `BinaryVector` fields.
print(fmt.format("Start Creating index IVF_FLAT"))
index = {
"index_type": "IVF_FLAT",
"metric_type": "L2",
"params": {"nlist": 128},
}

hello_milvus.create_index("embeddings", index)

################################################################################
# 5. search, query, and hybrid search
# After data were inserted into Milvus and indexed, you can perform:
# - search based on vector similarity
# - query based on scalar filtering(boolean, int, etc.)
# - hybrid search based on vector similarity and scalar filtering.
#

# Before conducting a search or a query, you need to load the data in `hello_milvus` into memory.
print(fmt.format("Start loading"))
hello_milvus.load()

# -----------------------------------------------------------------------------
# search based on vector similarity
print(fmt.format("Start searching based on vector similarity"))
vectors_to_search = entities[-1][-2:]
search_params = {
"metric_type": "L2",
"params": {"nprobe": 10},
}

start_time = time.time()
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, output_fields=["random"])
end_time = time.time()

# OUTPUT:
# search result: data: ['["id: 8, distance: 0.0, entity: {\'random\': 0.9007387227368949}", "id: 0, distance: 0.49515748023986816, entity: {\'random\': 0.6378742006852851}", "id: 2, distance: 0.5305156707763672, entity: {\'random\': 0.1321158395732429}"]', '["id: 9, distance: 0.0, entity: {\'random\': 0.4494463384561439}", "id: 8, distance: 0.558194100856781, entity: {\'random\': 0.9007387227368949}", "id: 2, distance: 0.7718868255615234, entity: {\'random\': 0.1321158395732429}"]'], cost: 21;
# search cost: 21
print(f"search result: {result};\nsearch cost: {result.cost}")
print(search_latency_fmt.format(end_time - start_time))

# -----------------------------------------------------------------------------
# query based on scalar filtering(boolean, int, etc.)
print(fmt.format("Start querying with `random > 0.5`"))

start_time = time.time()
result = hello_milvus.query(expr="random > 0.5", output_fields=["random", "embeddings"])
end_time = time.time()

# OUTPUT:
# query result: data: ["{'random': 0.6378742006852851, 'embeddings': [0.18477614, 0.42930314, 0.40345728, 0.3957196, 0.6963897, 0.24356908, 0.42512414, 0.5724385], 'pk': '0'}", "{'random': 0.744296470467782, 'embeddings': [0.8349225, 0.6614872, 0.98359716, 0.15854438, 0.30939594, 0.23553558, 0.1950739, 0.80361205], 'pk': '4'}", "{'random': 0.6025374094941409, 'embeddings': [0.36677808, 0.218786, 0.25240582, 0.82230526, 0.21011819, 0.16813536, 0.8129038, 0.74800706], 'pk': '7'}", "{'random': 0.9007387227368949, 'embeddings': [0.27464902, 0.07500089, 0.57728964, 0.6654878, 0.8698446, 0.3814792, 0.8825416, 0.58730817], 'pk': '8'}"], extra_info: {'cost': '21'};
# query cost: 21
print(f"query result: {result};\nquery cost: {result.extra['cost']}")
print(search_latency_fmt.format(end_time - start_time))


# -----------------------------------------------------------------------------
# hybrid search
print(fmt.format("Start hybrid searching with `random > 0.5`"))

start_time = time.time()
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, expr="random > 0.5", output_fields=["random"])
end_time = time.time()

# OUTPUT:
# search result: data: ['["id: 8, distance: 0.0, entity: {\'random\': 0.9007387227368949}", "id: 0, distance: 0.49515748023986816, entity: {\'random\': 0.6378742006852851}", "id: 7, distance: 0.670731246471405, entity: {\'random\': 0.6025374094941409}"]', '["id: 8, distance: 0.558194100856781, entity: {\'random\': 0.9007387227368949}", "id: 0, distance: 1.0780366659164429, entity: {\'random\': 0.6378742006852851}", "id: 7, distance: 1.1083570718765259, entity: {\'random\': 0.6025374094941409}"]'], cost: 21;
# search cost: 21
print(f"search result: {result};\nsearch cost: {result.cost}")
print(search_latency_fmt.format(end_time - start_time))

###############################################################################
# 6. delete entities by PK
# You can delete entities by their PK values using boolean expressions.
ids = insert_result.primary_keys

expr = f'pk in ["{ids[0]}" , "{ids[1]}"]'
print(fmt.format(f"Start deleting with expr `{expr}`"))

result = hello_milvus.query(expr=expr, output_fields=["random", "embeddings"])
print(f"query before delete by expr=`{expr}` -> result: \n-{result[0]}\n-{result[1]}\n")

delete_result = hello_milvus.delete(expr)
# OUTPUT:
# delete result: (insert count: 0, delete count: 2, upsert count: 0, timestamp: 0, success count: 0, err count: 0, cost: 2);
# delete cost: 2
print(f"delete result: {delete_result};\ndelete cost: {delete_result.cost}")

result = hello_milvus.query(expr=expr, output_fields=["random", "embeddings"])
print(f"query after delete by expr=`{expr}` -> result: {result}\n")


###############################################################################
# 7. drop collection
# Finally, drop the hello_milvus collection
print(fmt.format(f"Drop collection `{collection_name}`"))
utility.drop_collection(collection_name)
74 changes: 74 additions & 0 deletions examples/milvus_client/simple_cost.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
import time
import numpy as np
from pymilvus import (
MilvusClient,
)

fmt = "\n=== {:30} ===\n"
dim = 8
collection_name = "hello_client_cost"
# milvus_client = MilvusClient("http://localhost:19530")
milvus_client = MilvusClient(uri="https://in01-20fa6a32462c074.aws-us-west-2.vectordb-uat3.zillizcloud.com:19541",
token="root:j6|y3/g$5Lq,a[TJ^ckphSMs{-F[&Jl)")

has_collection = milvus_client.has_collection(collection_name, timeout=5)
if has_collection:
milvus_client.drop_collection(collection_name)
milvus_client.create_collection(collection_name, dim, consistency_level="Strong", metric_type="L2")

print(fmt.format(" all collections "))
print(milvus_client.list_collections())

print(fmt.format(f"schema of collection {collection_name}"))
print(milvus_client.describe_collection(collection_name))

rng = np.random.default_rng(seed=19530)
rows = [
{"id": 1, "vector": rng.random((1, dim))[0], "a": 100},
{"id": 2, "vector": rng.random((1, dim))[0], "b": 200},
{"id": 3, "vector": rng.random((1, dim))[0], "c": 300},
{"id": 4, "vector": rng.random((1, dim))[0], "d": 400},
{"id": 5, "vector": rng.random((1, dim))[0], "e": 500},
{"id": 6, "vector": rng.random((1, dim))[0], "f": 600},
]

print(fmt.format("Start inserting entities"))
insert_result = milvus_client.insert(collection_name, rows, progress_bar=True)
print(fmt.format("Inserting entities done"))
# OUTPUT:
# insert result: {'insert_count': 6, 'ids': [1, 2, 3, 4, 5, 6], 'cost': '1'};
# insert cost: 1
print(f"insert result: {insert_result};\ninsert cost: {insert_result['cost']}")

print(fmt.format("Start query by specifying primary keys"))
query_results = milvus_client.query(collection_name, ids=[2])
# OUTPUT:
# query result: data: ["{'id': 2, 'vector': [0.9007387, 0.44944635, 0.18477614, 0.42930314, 0.40345728, 0.3957196, 0.6963897, 0.24356908], 'b': 200}"], extra_info: {'cost': '21'}
# query cost: 21
print(f"query result: {query_results}\nquery cost: {query_results.extra['cost']}")

upsert_ret = milvus_client.upsert(collection_name, {"id": 2 , "vector": rng.random((1, dim))[0], "g": 100})
# OUTPUT:
# upsert result: {'upsert_count': 1, 'cost': '2'}
# upsert cost: 2
print(f"upsert result: {upsert_ret}\nupsert cost: {upsert_ret['cost']}")

print(fmt.format("Start query by specifying primary keys"))
query_results = milvus_client.query(collection_name, ids=[2])
print(f"query result: {query_results}\nquery cost: {query_results.extra['cost']}")

print(f"start to delete by specifying filter in collection {collection_name}")
delete_result = milvus_client.delete(collection_name, ids=[6])
# OUTPUT:
# delete result: {'delete_count': 1, 'cost': '1'}
# delete cost: 1
print(f"delete result: {delete_result}\ndelete cost: {delete_result['cost']}")

rng = np.random.default_rng(seed=19530)
vectors_to_search = rng.random((1, dim))

print(fmt.format(f"Start search with retrieve serveral fields."))
result = milvus_client.search(collection_name, vectors_to_search, limit=3, output_fields=["pk", "a", "b"])
print(f"search result: {result}\nsearch cost: {result.extra['cost']}")

milvus_client.drop_collection(collection_name)
25 changes: 21 additions & 4 deletions pymilvus/client/abstract.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
import ujson

from pymilvus.exceptions import DataTypeNotMatchException, ExceptionsMessage, MilvusException
from pymilvus.grpc_gen import schema_pb2
from pymilvus.grpc_gen import common_pb2, schema_pb2
from pymilvus.settings import Config

from . import entity_helper, utils
Expand Down Expand Up @@ -195,6 +195,7 @@ def __init__(self, raw: Any):
self._timestamp = 0
self._succ_index = []
self._err_index = []
self._cost = 0

self._pack(raw)

Expand Down Expand Up @@ -234,10 +235,16 @@ def succ_index(self):
def err_index(self):
return self._err_index

# The unit of this cost is vcu, similar to token
@property
def cost(self):
return self._cost

def __str__(self):
return (
f"(insert count: {self._insert_cnt}, delete count: {self._delete_cnt}, upsert count: {self._upsert_cnt}, "
f"timestamp: {self._timestamp}, success count: {self.succ_count}, err count: {self.err_count})"
f"timestamp: {self._timestamp}, success count: {self.succ_count}, err count: {self.err_count}, "
f"cost: {self._cost})"
)

__repr__ = __str__
Expand All @@ -262,6 +269,9 @@ def _pack(self, raw: Any):
self._timestamp = raw.timestamp
self._succ_index = raw.succ_index
self._err_index = raw.err_index
self._cost = int(
raw.status.extra_info["report_value"] if raw.status and raw.status.extra_info else "0"
)


class SequenceIterator:
Expand Down Expand Up @@ -374,10 +384,17 @@ def __str__(self):
class SearchResult(list):
"""nq results: List[Hits]"""

def __init__(self, res: schema_pb2.SearchResultData, round_decimal: Optional[int] = None):
def __init__(
self,
res: schema_pb2.SearchResultData,
round_decimal: Optional[int] = None,
status: Optional[common_pb2.Status] = None,
):
self._nq = res.num_queries
all_topks = res.topks

self.cost = int(status.extra_info["report_value"] if status and status.extra_info else "0")

output_fields = res.output_fields
fields_data = res.fields_data

Expand Down Expand Up @@ -497,7 +514,7 @@ def __iter__(self) -> SequenceIterator:

def __str__(self) -> str:
"""Only print at most 10 query results"""
return str(list(map(str, self[:10])))
return f"data: {list(map(str, self[:10]))} {'...' if len(self) > 10 else ''}, cost: {self.cost}"

__repr__ = __str__

Expand Down
2 changes: 1 addition & 1 deletion pymilvus/client/asynch.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,7 +164,7 @@ def exception(self):
class SearchFuture(Future):
def on_response(self, response: milvus_pb2.SearchResults):
check_status(response.status)
return SearchResult(response.results)
return SearchResult(response.results, status=response.status)


class MutationFuture(Future):
Expand Down
8 changes: 5 additions & 3 deletions pymilvus/client/grpc_handler.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@
CompactionState,
DatabaseInfo,
DataType,
ExtraList,
GrantInfo,
Group,
IndexState,
Expand All @@ -57,6 +58,7 @@
State,
Status,
UserInfo,
get_cost_extra,
)
from .utils import (
check_invalid_binary_vector,
Expand Down Expand Up @@ -732,7 +734,7 @@ def _execute_search(
response = self._stub.Search(request, timeout=timeout)
check_status(response.status)
round_decimal = kwargs.get("round_decimal", -1)
return SearchResult(response.results, round_decimal)
return SearchResult(response.results, round_decimal, status=response.status)

except Exception as e:
if kwargs.get("_async", False):
Expand All @@ -751,7 +753,7 @@ def _execute_hybrid_search(
response = self._stub.HybridSearch(request, timeout=timeout)
check_status(response.status)
round_decimal = kwargs.get("round_decimal", -1)
return SearchResult(response.results, round_decimal)
return SearchResult(response.results, round_decimal, status=response.status)

except Exception as e:
if kwargs.get("_async", False):
Expand Down Expand Up @@ -1519,7 +1521,7 @@ def query(
response.fields_data, index, dynamic_fields
)
results.append(entity_row_data)
return results
return ExtraList(results, extra=get_cost_extra(response.status))

@retry_on_rpc_failure()
def load_balance(
Expand Down
Loading