-
Notifications
You must be signed in to change notification settings - Fork 339
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Support async delete, get, insert, query, search, hybrid_search, upsert, create_collection, drop_collection, describe_collection - Support adding interceptor to aio channel - Use `_async_channel.channel_ready()` in `_wait_for_channel_ready` instead of polling logic by `_async_channel.get_state()` - Add `_async` parameter in `connections.py` to determine whether to establish a synchronous or asynchronous connection - Update `__init__.py` to allow importing AsyncMilvusClient - Add a simple code example for AsyncMilvusClient Signed-off-by: Ruichen Bao <[email protected]> Signed-off-by: Ruichen Bao <[email protected]>
- Loading branch information
Showing
7 changed files
with
1,499 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
from pymilvus import ( | ||
DataType, | ||
MilvusClient, | ||
AsyncMilvusClient, | ||
AnnSearchRequest, | ||
RRFRanker, | ||
) | ||
import numpy as np | ||
import asyncio | ||
import time | ||
import random | ||
|
||
fmt = "\n=== {:30} ===\n" | ||
num_entities, dim = 100, 8 | ||
default_limit = 3 | ||
collection_name = "hello_milvus" | ||
rng = np.random.default_rng(seed=19530) | ||
|
||
milvus_client = MilvusClient("example.db") | ||
async_milvus_client = AsyncMilvusClient("example.db") | ||
|
||
loop = asyncio.get_event_loop() | ||
|
||
schema = milvus_client.create_schema(auto_id=False, description="hello_milvus is the simplest demo to introduce the APIs") | ||
schema.add_field("pk", DataType.VARCHAR, is_primary=True, max_length=100) | ||
schema.add_field("random", DataType.DOUBLE) | ||
schema.add_field("embeddings", DataType.FLOAT_VECTOR, dim=dim) | ||
schema.add_field("embeddings2", DataType.FLOAT_VECTOR, dim=dim) | ||
|
||
index_params = milvus_client.prepare_index_params() | ||
index_params.add_index(field_name = "embeddings", index_type = "HNSW", metric_type="L2", nlist=128) | ||
index_params.add_index(field_name = "embeddings2",index_type = "HNSW", metric_type="L2", nlist=128) | ||
|
||
async def recreate_collection(): | ||
print(fmt.format("Start dropping collection")) | ||
await async_milvus_client.drop_collection(collection_name) | ||
print(fmt.format("Dropping collection done")) | ||
print(fmt.format("Start creating collection")) | ||
await async_milvus_client.create_collection(collection_name, schema=schema, index_params=index_params, consistency_level="Strong") | ||
print(fmt.format("Creating collection done")) | ||
|
||
has_collection = milvus_client.has_collection(collection_name, timeout=5) | ||
if has_collection: | ||
loop.run_until_complete(recreate_collection()) | ||
else: | ||
print(fmt.format("Start creating collection")) | ||
loop.run_until_complete(async_milvus_client.create_collection(collection_name, schema=schema, index_params=index_params, consistency_level="Strong")) | ||
print(fmt.format("Creating collection done")) | ||
|
||
print(fmt.format(" all collections ")) | ||
print(milvus_client.list_collections()) | ||
|
||
print(fmt.format(f"schema of collection {collection_name}")) | ||
print(milvus_client.describe_collection(collection_name)) | ||
|
||
async def async_insert(collection_name): | ||
entities = [ | ||
# provide the pk field because `auto_id` is set to False | ||
[str(i) for i in range(num_entities)], | ||
rng.random(num_entities).tolist(), # field random, only supports list | ||
rng.random((num_entities, dim)), # field embeddings, supports numpy.ndarray and list | ||
rng.random((num_entities, dim)), # field embeddings2, supports numpy.ndarray and list | ||
] | ||
rows = [ {"pk": entities[0][i], "random": entities[1][i], "embeddings": entities[2][i], "embeddings2": entities[3][i]} for i in range (num_entities)] | ||
print(fmt.format("Start async inserting entities")) | ||
|
||
start_time = time.time() | ||
tasks = [] | ||
for row in rows: | ||
task = async_milvus_client.insert(collection_name, [row]) | ||
tasks.append(task) | ||
await asyncio.gather(*tasks) | ||
end_time = time.time() | ||
print(fmt.format("Total time: {:.2f} seconds".format(end_time - start_time))) | ||
print(fmt.format("Async inserting entities done")) | ||
|
||
loop.run_until_complete(async_insert(collection_name)) | ||
|
||
async def other_async_task(collection_name): | ||
tasks = [] | ||
# search | ||
random_vector = rng.random((1, dim)) | ||
random_vector2 = rng.random((1, dim)) | ||
task = async_milvus_client.search(collection_name, random_vector, limit=default_limit, output_fields=["pk"], anns_field="embeddings") | ||
tasks.append(task) | ||
# hybrid search | ||
search_param = { | ||
"data": random_vector, | ||
"anns_field": "embeddings", | ||
"param": {"metric_type": "L2"}, | ||
"limit": default_limit, | ||
"expr": "random > 0.5"} | ||
req = AnnSearchRequest(**search_param) | ||
task = async_milvus_client.hybrid_search(collection_name, [req], RRFRanker(), default_limit, output_fields=["pk"]) | ||
tasks.append(task) | ||
# get | ||
random_pk = random.randint(0, num_entities - 1) | ||
task = async_milvus_client.get(collection_name=collection_name, ids=[random_pk]) | ||
tasks.append(task) | ||
# query | ||
task = async_milvus_client.query(collection_name=collection_name, filter="", limit=default_limit) | ||
tasks.append(task) | ||
# delete | ||
task = async_milvus_client.delete(collection_name=collection_name, ids=[random_pk]) | ||
tasks.append(task) | ||
# insert | ||
task = async_milvus_client.insert( | ||
collection_name=collection_name, | ||
data=[{"pk": str(random_pk), "random": random_vector[0][0], "embeddings": random_vector[0], "embeddings2": random_vector[0]}], | ||
) | ||
tasks.append(task) | ||
# upsert | ||
task = async_milvus_client.upsert( | ||
collection_name=collection_name, | ||
data=[{"pk": str(random_pk), "random": random_vector2[0][0], "embeddings": random_vector2[0], "embeddings2": random_vector2[0]}], | ||
) | ||
tasks.append(task) | ||
|
||
results = await asyncio.gather(*tasks) | ||
return results | ||
|
||
results = loop.run_until_complete(other_async_task(collection_name)) | ||
for r in results: | ||
print(r) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.