-
Notifications
You must be signed in to change notification settings - Fork 339
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[2.4] support the report value in the dml and dql request
Signed-off-by: SimFG <[email protected]>
- Loading branch information
Showing
8 changed files
with
344 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
# hello_milvus.py demonstrates the basic operations of PyMilvus, a Python SDK of Milvus. | ||
# 1. connect to Milvus | ||
# 2. create collection | ||
# 3. insert data | ||
# 4. create index | ||
# 5. search, query, and hybrid search on entities | ||
# 6. delete entities by PK | ||
# 7. drop collection | ||
import time | ||
|
||
import numpy as np | ||
from pymilvus import ( | ||
connections, | ||
utility, | ||
FieldSchema, CollectionSchema, DataType, | ||
Collection, | ||
) | ||
|
||
fmt = "\n=== {:30} ===\n" | ||
search_latency_fmt = "search latency = {:.4f}s" | ||
num_entities, dim = 10, 8 | ||
|
||
################################################################################# | ||
# 1. connect to Milvus | ||
# Add a new connection alias `default` for Milvus server in `localhost:19530` | ||
# Actually the "default" alias is a buildin in PyMilvus. | ||
# If the address of Milvus is the same as `localhost:19530`, you can omit all | ||
# parameters and call the method as: `connections.connect()`. | ||
# | ||
# Note: the `using` parameter of the following methods is default to "default". | ||
print(fmt.format("start connecting to Milvus")) | ||
connections.connect("default", host="localhost", port="19530") | ||
|
||
collection_name = "hello_cost" | ||
has = utility.has_collection(collection_name) | ||
print(f"Does collection {collection_name} exist in Milvus: {has}") | ||
|
||
################################################################################# | ||
# 2. create collection | ||
# We're going to create a collection with 3 fields. | ||
# +-+------------+------------+------------------+------------------------------+ | ||
# | | field name | field type | other attributes | field description | | ||
# +-+------------+------------+------------------+------------------------------+ | ||
# |1| "pk" | VarChar | is_primary=True | "primary field" | | ||
# | | | | auto_id=False | | | ||
# +-+------------+------------+------------------+------------------------------+ | ||
# |2| "random" | Double | | "a double field" | | ||
# +-+------------+------------+------------------+------------------------------+ | ||
# |3|"embeddings"| FloatVector| dim=8 | "float vector with dim 8" | | ||
# +-+------------+------------+------------------+------------------------------+ | ||
fields = [ | ||
FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100), | ||
FieldSchema(name="random", dtype=DataType.DOUBLE), | ||
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim) | ||
] | ||
|
||
schema = CollectionSchema(fields, f"{collection_name} is the simplest demo to introduce the APIs") | ||
|
||
print(fmt.format(f"Create collection `{collection_name}`")) | ||
hello_milvus = Collection(collection_name, schema, consistency_level="Strong") | ||
|
||
################################################################################ | ||
# 3. insert data | ||
# We are going to insert 3000 rows of data into `hello_milvus` | ||
# Data to be inserted must be organized in fields. | ||
# | ||
# The insert() method returns: | ||
# - either automatically generated primary keys by Milvus if auto_id=True in the schema; | ||
# - or the existing primary key field from the entities if auto_id=False in the schema. | ||
|
||
print(fmt.format("Start inserting entities")) | ||
rng = np.random.default_rng(seed=19530) | ||
entities = [ | ||
# provide the pk field because `auto_id` is set to False | ||
[str(i) for i in range(num_entities)], | ||
rng.random(num_entities).tolist(), # field random, only supports list | ||
rng.random((num_entities, dim)), # field embeddings, supports numpy.ndarray and list | ||
] | ||
|
||
insert_result = hello_milvus.insert(entities) | ||
# OUTPUT: | ||
# insert result: (insert count: 10, delete count: 0, upsert count: 0, timestamp: 449296288881311748, success count: 10, err count: 0, cost: 1); | ||
# insert cost: 1 | ||
print(f"insert result: {insert_result};\ninsert cost: {insert_result.cost}") | ||
|
||
hello_milvus.flush() | ||
print(f"Number of entities in Milvus: {hello_milvus.num_entities}") # check the num_entities | ||
|
||
################################################################################ | ||
# 4. create index | ||
# We are going to create an IVF_FLAT index for hello_milvus collection. | ||
# create_index() can only be applied to `FloatVector` and `BinaryVector` fields. | ||
print(fmt.format("Start Creating index IVF_FLAT")) | ||
index = { | ||
"index_type": "IVF_FLAT", | ||
"metric_type": "L2", | ||
"params": {"nlist": 128}, | ||
} | ||
|
||
hello_milvus.create_index("embeddings", index) | ||
|
||
################################################################################ | ||
# 5. search, query, and hybrid search | ||
# After data were inserted into Milvus and indexed, you can perform: | ||
# - search based on vector similarity | ||
# - query based on scalar filtering(boolean, int, etc.) | ||
# - hybrid search based on vector similarity and scalar filtering. | ||
# | ||
|
||
# Before conducting a search or a query, you need to load the data in `hello_milvus` into memory. | ||
print(fmt.format("Start loading")) | ||
hello_milvus.load() | ||
|
||
# ----------------------------------------------------------------------------- | ||
# search based on vector similarity | ||
print(fmt.format("Start searching based on vector similarity")) | ||
vectors_to_search = entities[-1][-2:] | ||
search_params = { | ||
"metric_type": "L2", | ||
"params": {"nprobe": 10}, | ||
} | ||
|
||
start_time = time.time() | ||
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, output_fields=["random"]) | ||
end_time = time.time() | ||
|
||
# OUTPUT: | ||
# search result: data: ['["id: 8, distance: 0.0, entity: {\'random\': 0.9007387227368949}", "id: 0, distance: 0.49515748023986816, entity: {\'random\': 0.6378742006852851}", "id: 2, distance: 0.5305156707763672, entity: {\'random\': 0.1321158395732429}"]', '["id: 9, distance: 0.0, entity: {\'random\': 0.4494463384561439}", "id: 8, distance: 0.558194100856781, entity: {\'random\': 0.9007387227368949}", "id: 2, distance: 0.7718868255615234, entity: {\'random\': 0.1321158395732429}"]'], cost: 21; | ||
# search cost: 21 | ||
print(f"search result: {result};\nsearch cost: {result.cost}") | ||
print(search_latency_fmt.format(end_time - start_time)) | ||
|
||
# ----------------------------------------------------------------------------- | ||
# query based on scalar filtering(boolean, int, etc.) | ||
print(fmt.format("Start querying with `random > 0.5`")) | ||
|
||
start_time = time.time() | ||
result = hello_milvus.query(expr="random > 0.5", output_fields=["random", "embeddings"]) | ||
end_time = time.time() | ||
|
||
# OUTPUT: | ||
# query result: data: ["{'random': 0.6378742006852851, 'embeddings': [0.18477614, 0.42930314, 0.40345728, 0.3957196, 0.6963897, 0.24356908, 0.42512414, 0.5724385], 'pk': '0'}", "{'random': 0.744296470467782, 'embeddings': [0.8349225, 0.6614872, 0.98359716, 0.15854438, 0.30939594, 0.23553558, 0.1950739, 0.80361205], 'pk': '4'}", "{'random': 0.6025374094941409, 'embeddings': [0.36677808, 0.218786, 0.25240582, 0.82230526, 0.21011819, 0.16813536, 0.8129038, 0.74800706], 'pk': '7'}", "{'random': 0.9007387227368949, 'embeddings': [0.27464902, 0.07500089, 0.57728964, 0.6654878, 0.8698446, 0.3814792, 0.8825416, 0.58730817], 'pk': '8'}"], extra_info: {'cost': '21'}; | ||
# query cost: 21 | ||
print(f"query result: {result};\nquery cost: {result.extra['cost']}") | ||
print(search_latency_fmt.format(end_time - start_time)) | ||
|
||
|
||
# ----------------------------------------------------------------------------- | ||
# hybrid search | ||
print(fmt.format("Start hybrid searching with `random > 0.5`")) | ||
|
||
start_time = time.time() | ||
result = hello_milvus.search(vectors_to_search, "embeddings", search_params, limit=3, expr="random > 0.5", output_fields=["random"]) | ||
end_time = time.time() | ||
|
||
# OUTPUT: | ||
# search result: data: ['["id: 8, distance: 0.0, entity: {\'random\': 0.9007387227368949}", "id: 0, distance: 0.49515748023986816, entity: {\'random\': 0.6378742006852851}", "id: 7, distance: 0.670731246471405, entity: {\'random\': 0.6025374094941409}"]', '["id: 8, distance: 0.558194100856781, entity: {\'random\': 0.9007387227368949}", "id: 0, distance: 1.0780366659164429, entity: {\'random\': 0.6378742006852851}", "id: 7, distance: 1.1083570718765259, entity: {\'random\': 0.6025374094941409}"]'], cost: 21; | ||
# search cost: 21 | ||
print(f"search result: {result};\nsearch cost: {result.cost}") | ||
print(search_latency_fmt.format(end_time - start_time)) | ||
|
||
############################################################################### | ||
# 6. delete entities by PK | ||
# You can delete entities by their PK values using boolean expressions. | ||
ids = insert_result.primary_keys | ||
|
||
expr = f'pk in ["{ids[0]}" , "{ids[1]}"]' | ||
print(fmt.format(f"Start deleting with expr `{expr}`")) | ||
|
||
result = hello_milvus.query(expr=expr, output_fields=["random", "embeddings"]) | ||
print(f"query before delete by expr=`{expr}` -> result: \n-{result[0]}\n-{result[1]}\n") | ||
|
||
delete_result = hello_milvus.delete(expr) | ||
# OUTPUT: | ||
# delete result: (insert count: 0, delete count: 2, upsert count: 0, timestamp: 0, success count: 0, err count: 0, cost: 2); | ||
# delete cost: 2 | ||
print(f"delete result: {delete_result};\ndelete cost: {delete_result.cost}") | ||
|
||
result = hello_milvus.query(expr=expr, output_fields=["random", "embeddings"]) | ||
print(f"query after delete by expr=`{expr}` -> result: {result}\n") | ||
|
||
|
||
############################################################################### | ||
# 7. drop collection | ||
# Finally, drop the hello_milvus collection | ||
print(fmt.format(f"Drop collection `{collection_name}`")) | ||
utility.drop_collection(collection_name) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
import time | ||
import numpy as np | ||
from pymilvus import ( | ||
MilvusClient, | ||
) | ||
|
||
fmt = "\n=== {:30} ===\n" | ||
dim = 8 | ||
collection_name = "hello_client_cost" | ||
# milvus_client = MilvusClient("http://localhost:19530") | ||
milvus_client = MilvusClient(uri="https://in01-20fa6a32462c074.aws-us-west-2.vectordb-uat3.zillizcloud.com:19541", | ||
token="root:j6|y3/g$5Lq,a[TJ^ckphSMs{-F[&Jl)") | ||
|
||
has_collection = milvus_client.has_collection(collection_name, timeout=5) | ||
if has_collection: | ||
milvus_client.drop_collection(collection_name) | ||
milvus_client.create_collection(collection_name, dim, consistency_level="Strong", metric_type="L2") | ||
|
||
print(fmt.format(" all collections ")) | ||
print(milvus_client.list_collections()) | ||
|
||
print(fmt.format(f"schema of collection {collection_name}")) | ||
print(milvus_client.describe_collection(collection_name)) | ||
|
||
rng = np.random.default_rng(seed=19530) | ||
rows = [ | ||
{"id": 1, "vector": rng.random((1, dim))[0], "a": 100}, | ||
{"id": 2, "vector": rng.random((1, dim))[0], "b": 200}, | ||
{"id": 3, "vector": rng.random((1, dim))[0], "c": 300}, | ||
{"id": 4, "vector": rng.random((1, dim))[0], "d": 400}, | ||
{"id": 5, "vector": rng.random((1, dim))[0], "e": 500}, | ||
{"id": 6, "vector": rng.random((1, dim))[0], "f": 600}, | ||
] | ||
|
||
print(fmt.format("Start inserting entities")) | ||
insert_result = milvus_client.insert(collection_name, rows, progress_bar=True) | ||
print(fmt.format("Inserting entities done")) | ||
# OUTPUT: | ||
# insert result: {'insert_count': 6, 'ids': [1, 2, 3, 4, 5, 6], 'cost': '1'}; | ||
# insert cost: 1 | ||
print(f"insert result: {insert_result};\ninsert cost: {insert_result['cost']}") | ||
|
||
print(fmt.format("Start query by specifying primary keys")) | ||
query_results = milvus_client.query(collection_name, ids=[2]) | ||
# OUTPUT: | ||
# query result: data: ["{'id': 2, 'vector': [0.9007387, 0.44944635, 0.18477614, 0.42930314, 0.40345728, 0.3957196, 0.6963897, 0.24356908], 'b': 200}"], extra_info: {'cost': '21'} | ||
# query cost: 21 | ||
print(f"query result: {query_results}\nquery cost: {query_results.extra['cost']}") | ||
|
||
upsert_ret = milvus_client.upsert(collection_name, {"id": 2 , "vector": rng.random((1, dim))[0], "g": 100}) | ||
# OUTPUT: | ||
# upsert result: {'upsert_count': 1, 'cost': '2'} | ||
# upsert cost: 2 | ||
print(f"upsert result: {upsert_ret}\nupsert cost: {upsert_ret['cost']}") | ||
|
||
print(fmt.format("Start query by specifying primary keys")) | ||
query_results = milvus_client.query(collection_name, ids=[2]) | ||
print(f"query result: {query_results}\nquery cost: {query_results.extra['cost']}") | ||
|
||
print(f"start to delete by specifying filter in collection {collection_name}") | ||
delete_result = milvus_client.delete(collection_name, ids=[6]) | ||
# OUTPUT: | ||
# delete result: {'delete_count': 1, 'cost': '1'} | ||
# delete cost: 1 | ||
print(f"delete result: {delete_result}\ndelete cost: {delete_result['cost']}") | ||
|
||
rng = np.random.default_rng(seed=19530) | ||
vectors_to_search = rng.random((1, dim)) | ||
|
||
print(fmt.format(f"Start search with retrieve serveral fields.")) | ||
result = milvus_client.search(collection_name, vectors_to_search, limit=3, output_fields=["pk", "a", "b"]) | ||
print(f"search result: {result}\nsearch cost: {result.extra['cost']}") | ||
|
||
milvus_client.drop_collection(collection_name) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.