Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding Esri 2020 Land Cover/Land Use Dataset #390

Merged
merged 4 commits into from
Feb 9, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions docs/api/datasets.rst
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,11 @@ EnviroAtlas

.. autoclass:: EnviroAtlas

Esri2020
^^^^^^^^

.. autoclass:: Esri2020

Landsat
^^^^^^^

Expand Down
Binary file not shown.
Binary file not shown.
93 changes: 93 additions & 0 deletions tests/datasets/test_esri2020.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

import os
import shutil
from pathlib import Path
from typing import Generator

import pytest
import torch
import torch.nn as nn
from _pytest.monkeypatch import MonkeyPatch
from rasterio.crs import CRS

import torchgeo.datasets.utils
from torchgeo.datasets import BoundingBox, Esri2020, IntersectionDataset, UnionDataset


def download_url(url: str, root: str, *args: str, **kwargs: str) -> None:
shutil.copy(url, root)


class TestEsri2020:
@pytest.fixture
def dataset(
self, monkeypatch: Generator[MonkeyPatch, None, None], tmp_path: Path
) -> Esri2020:
monkeypatch.setattr( # type: ignore[attr-defined]
torchgeo.datasets.esri2020, "download_url", download_url
)
zipfile = "io-lulc-model-001-v01-composite-v03-supercell-v02-clip-v01.zip"
monkeypatch.setattr(Esri2020, "zipfile", zipfile) # type: ignore[attr-defined]

md5 = "4932855fcd00735a34b74b1f87db3df0"
monkeypatch.setattr(Esri2020, "md5", md5) # type: ignore[attr-defined]
url = os.path.join(
"tests",
"data",
"esri2020",
"io-lulc-model-001-v01-composite-v03-supercell-v02-clip-v01.zip",
)
monkeypatch.setattr(Esri2020, "url", url) # type: ignore[attr-defined]
root = str(tmp_path)
transforms = nn.Identity() # type: ignore[attr-defined]
return Esri2020(root, transforms=transforms, download=True, checksum=True)

def test_already_downloaded(self, tmp_path: Path) -> None:
url = os.path.join(
"tests",
"data",
"esri2020",
"io-lulc-model-001-v01-composite-v03-supercell-v02-clip-v01.zip",
)
root = str(tmp_path)
shutil.copy(url, root)
Esri2020(root)

def test_getitem(self, dataset: Esri2020) -> None:
x = dataset[dataset.bounds]
assert isinstance(x, dict)
assert isinstance(x["crs"], CRS)
assert isinstance(x["mask"], torch.Tensor)

def test_already_extracted(self, dataset: Esri2020) -> None:
Esri2020(root=dataset.root, download=True)

def test_not_downloaded(self, tmp_path: Path) -> None:
with pytest.raises(RuntimeError, match="Dataset not found"):
Esri2020(str(tmp_path), checksum=True)

def test_and(self, dataset: Esri2020) -> None:
ds = dataset & dataset
assert isinstance(ds, IntersectionDataset)

def test_or(self, dataset: Esri2020) -> None:
ds = dataset | dataset
assert isinstance(ds, UnionDataset)

def test_plot(self, dataset: Esri2020) -> None:
query = dataset.bounds
x = dataset[query]
dataset.plot(x["mask"])

def test_url(self) -> None:
ds = Esri2020(os.path.join("tests", "data", "esri2020"))
assert "ai4edataeuwest.blob.core.windows.net" in ds.url

def test_invalid_query(self, dataset: Esri2020) -> None:
query = BoundingBox(0, 0, 0, 0, 0, 0)
with pytest.raises(
IndexError, match="query: .* not found in index with bounds:"
):
dataset[query]
2 changes: 2 additions & 0 deletions torchgeo/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
from .cyclone import TropicalCycloneWindEstimation
from .dfc2022 import DFC2022
from .enviroatlas import EnviroAtlas
from .esri2020 import Esri2020
from .etci2021 import ETCI2021
from .eurosat import EuroSAT
from .fair1m import FAIR1M
Expand Down Expand Up @@ -96,6 +97,7 @@
"ChesapeakeVA",
"ChesapeakeWV",
"ChesapeakeCVPR",
"Esri2020",
"Landsat",
"Landsat1",
"Landsat2",
Expand Down
138 changes: 138 additions & 0 deletions torchgeo/datasets/esri2020.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

"""Esri 2020 Land Cover Dataset."""

import abc
import glob
import os
from typing import Any, Callable, Dict, Optional

from rasterio.crs import CRS

from .geo import RasterDataset
from .utils import download_url, extract_archive


class Esri2020(RasterDataset, abc.ABC):
"""Esri 2020 Land Cover Dataset.

The `Esri 2020 Land Cover dataset
<https://www.arcgis.com/home/item.html?id=fc92d38533d440078f17678ebc20e8e2>`_
consists of a global single band land use/land cover map derived from ESA
Sentinel-2 imagery at 10m resolution with a total of 10 classes.
It was published in July 2021 and used the Universal Transverse Mercator (UTM)
projection. This dataset only contains labels, no raw satellite imagery.

The 10 classes are:

0. No Data
1. Water
2. Trees
3. Grass
4. Flooded Vegetation
5. Crops
6. Scrub/Shrub
7. Built Area
8. Bare Ground
9. Snow/Ice
10. Clouds

A more detailed explanation of the invidual classes can be found
`here <https://www.arcgis.com/home/item.html?id=fc92d38533d440078f17678ebc20e8e2>`_.

If you use this dataset please cite the following paper:

* https://ieeexplore.ieee.org/document/9553499

.. versionadded:: 0.3
"""

is_image = False
filename_glob = "*_20200101-20210101.*"
filename_regex = r"""^
(?P<id>[0-9][0-9][A-Z])
_(?P<date>\d{8})
-(?P<processing_date>\d{8})
"""

zipfile = "io-lulc-model-001-v01-composite-v03-supercell-v02-clip-v01.zip"
md5 = "4932855fcd00735a34b74b1f87db3df0"

url = (
"https://ai4edataeuwest.blob.core.windows.net/io-lulc/"
"io-lulc-model-001-v01-composite-v03-supercell-v02-clip-v01.zip"
)

def __init__(
self,
root: str = "data",
crs: Optional[CRS] = None,
res: Optional[float] = None,
transforms: Optional[Callable[[Dict[str, Any]], Dict[str, Any]]] = None,
cache: bool = True,
download: bool = False,
checksum: bool = False,
) -> None:
"""Initialize a new Dataset instance.

Args:
root: root directory where dataset can be found
crs: :term:`coordinate reference system (CRS)` to warp to
(defaults to the CRS of the first file found)
res: resolution of the dataset in units of CRS
(defaults to the resolution of the first file found)
transforms: a function/transform that takes an input sample
and returns a transformed version
cache: if True, cache file handle to speed up repeated sampling
download: if True, download dataset and store it in the root directory
checksum: if True, check the MD5 of the downloaded files (may be slow)

Raises:
FileNotFoundError: if no files are found in ``root``
RuntimeError: if ``download=False`` but dataset is missing or checksum fails
"""
self.root = root
self.download = download
self.checksum = checksum

self._verify()

super().__init__(root, crs, res, transforms, cache)

def _verify(self) -> None:
"""Verify the integrity of the dataset.

Raises:
RuntimeError: if ``download=False`` but dataset is missing or checksum fails
"""
# Check if the extracted file already exists
pathname = os.path.join(self.root, "**", self.filename_glob)
if glob.glob(pathname):
return

# Check if the zip files have already been downloaded
pathname = os.path.join(self.root, self.zipfile)
if glob.glob(pathname):
self._extract()
return

# Check if the user requested to download the dataset
if not self.download:
raise RuntimeError(
f"Dataset not found in `root={self.root}` and `download=False`, "
"either specify a different `root` directory or use `download=True` "
"to automaticaly download the dataset."
)

# Download the dataset
self._download()
self._extract()

def _download(self) -> None:
"""Download the dataset."""
download_url(self.url, self.root, filename=self.zipfile, md5=self.md5)

def _extract(self) -> None:
"""Extract the dataset."""
extract_archive(os.path.join(self.root, self.zipfile))