Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add plot method to Levir, and change directory path #335

Merged
merged 6 commits into from
Dec 30, 2021
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified tests/data/levircd/LEVIR-CD+.zip
Binary file not shown.
12 changes: 11 additions & 1 deletion tests/datasets/test_levircd.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
from pathlib import Path
adamjstewart marked this conversation as resolved.
Show resolved Hide resolved
from typing import Generator

import matplotlib.pyplot as plt
import pytest
import torch
import torch.nn as nn
Expand All @@ -31,7 +32,7 @@ def dataset(
monkeypatch.setattr( # type: ignore[attr-defined]
torchgeo.datasets.utils, "download_url", download_url
)
md5 = "b61c300e9fd7146eb2c8e2512c0e9d39"
md5 = "1adf156f628aa32fb2e8fe6cada16c04"
monkeypatch.setattr(LEVIRCDPlus, "md5", md5) # type: ignore[attr-defined]
url = os.path.join("tests", "data", "levircd", "LEVIR-CD+.zip")
monkeypatch.setattr(LEVIRCDPlus, "url", url) # type: ignore[attr-defined]
Expand Down Expand Up @@ -60,3 +61,12 @@ def test_invalid_split(self) -> None:
def test_not_downloaded(self, tmp_path: Path) -> None:
with pytest.raises(RuntimeError, match="Dataset not found or corrupted."):
LEVIRCDPlus(str(tmp_path))

def test_plot(self, dataset: LEVIRCDPlus) -> None:
dataset.plot(dataset[0], suptitle="Test")
plt.close()

sample = dataset[0]
sample["prediction"] = sample["mask"].clone()
dataset.plot(sample, suptitle="Prediction")
plt.close()
73 changes: 66 additions & 7 deletions torchgeo/datasets/levircd.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
import os
from typing import Callable, Dict, List, Optional

import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image
Expand Down Expand Up @@ -47,6 +48,7 @@ class LEVIRCDPlus(VisionDataset):
url = "https://drive.google.com/file/d/1JamSsxiytXdzAIk6VDVWfc-OsX-81U81"
md5 = "1adf156f628aa32fb2e8fe6cada16c04"
filename = "LEVIR-CD+.zip"
directory = "LEVIR-CD+"
splits = ["train", "test"]

def __init__(
Expand Down Expand Up @@ -88,7 +90,7 @@ def __init__(
+ "You can use download=True to download it"
)

self.files = self._load_files(self.root, self.split)
self.files = self._load_files(self.root, self.directory, self.split)

def __getitem__(self, index: int) -> Dict[str, Tensor]:
"""Return an index within the dataset.
Expand Down Expand Up @@ -120,23 +122,26 @@ def __len__(self) -> int:
"""
return len(self.files)

def _load_files(self, root: str, split: str) -> List[Dict[str, str]]:
def _load_files(
self, root: str, directory: str, split: str
) -> List[Dict[str, str]]:
"""Return the paths of the files in the dataset.

Args:
root: root dir of dataset
directory: sub directory LEVIR-CD+
split: subset of dataset, one of [train, test]

Returns:
list of dicts containing paths for each pair of image1, image2, mask
"""
files = []
images = glob.glob(os.path.join(root, split, "A", "*.png"))
images = glob.glob(os.path.join(root, directory, split, "A", "*.png"))
images = sorted([os.path.basename(image) for image in images])
for image in images:
image1 = os.path.join(root, split, "A", image)
image2 = os.path.join(root, split, "B", image)
mask = os.path.join(root, split, "label", image)
image1 = os.path.join(root, directory, split, "A", image)
image2 = os.path.join(root, directory, split, "B", image)
mask = os.path.join(root, directory, split, "label", image)
files.append(dict(image1=image1, image2=image2, mask=mask))
return files

Expand Down Expand Up @@ -181,7 +186,7 @@ def _check_integrity(self) -> bool:
True if the dataset directories and split files are found, else False
"""
for filename in self.splits:
filepath = os.path.join(self.root, filename)
filepath = os.path.join(self.root, self.directory, filename)
if not os.path.exists(filepath):
return False
return True
Expand All @@ -202,3 +207,57 @@ def _download(self) -> None:
filename=self.filename,
md5=self.md5 if self.checksum else None,
)

def plot(
self,
sample: Dict[str, Tensor],
show_titles: bool = True,
suptitle: Optional[str] = None,
) -> plt.Figure:
"""Plot a sample from the dataset.

Args:
sample: a sample returned by :meth:`__getitem__`
show_titles: flag indicating whether to show titles above each panel
suptitle: optional suptitle to use for figure

Returns:
a matplotlib Figure with the rendered sample

.. versionadded:: 0.2
"""
image1, image2, mask = (
sample["image"][0, ...],
sample["image"][1, ...],
adamjstewart marked this conversation as resolved.
Show resolved Hide resolved
sample["mask"],
)
ncols = 3

if "prediction" in sample:
prediction = sample["prediction"]
ncols += 1

fig, axs = plt.subplots(nrows=1, ncols=ncols, figsize=(10, ncols * 5))

axs[0].imshow(image1.permute(1, 2, 0))
axs[0].axis("off")
axs[1].imshow(image2.permute(1, 2, 0))
axs[1].axis("off")
axs[2].imshow(mask)
axs[2].axis("off")

if "prediction" in sample:
axs[3].imshow(prediction)
axs[3].axis("off")
if show_titles:
axs[3].set_title("Prediction")

if show_titles:
axs[0].set_title("Image 1")
axs[1].set_title("Image 2")
axs[2].set_title("Mask")

if suptitle is not None:
plt.suptitle(suptitle)

return fig