Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add verbose and optimization args for parity tests (Gelu, Layernorm, … #14739

Merged
merged 10 commits into from
Feb 24, 2023
9 changes: 8 additions & 1 deletion onnxruntime/python/tools/transformers/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@ def optimize_by_onnxruntime(
optimized_model_path: Optional[str] = None,
opt_level: Optional[int] = 99,
disabled_optimizers=[],
verbose=False,
) -> str:
"""
Use onnxruntime to optimize model.
Expand Down Expand Up @@ -103,6 +104,10 @@ def optimize_by_onnxruntime(

sess_options.optimized_model_filepath = optimized_model_path

if verbose:
print("Using onnxruntime to optomize model - Debug level Set to verbose")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

typo: optimize

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sure done

sess_options.log_severity_level = 0

kwargs = {}
if disabled_optimizers:
kwargs["disabled_optimizers"] = disabled_optimizers
Expand All @@ -119,7 +124,6 @@ def optimize_by_onnxruntime(
elif torch_version.hip:
gpu_ep.append("MIGraphXExecutionProvider")
gpu_ep.append("ROCMExecutionProvider")

session = onnxruntime.InferenceSession(onnx_model_path, sess_options, providers=gpu_ep, **kwargs)
assert not set(onnxruntime.get_available_providers()).isdisjoint(
["CUDAExecutionProvider", "ROCMExecutionProvider", "MIGraphXExecutionProvider"]
Expand Down Expand Up @@ -194,6 +198,7 @@ def optimize_model(
opt_level: Optional[int] = None,
use_gpu: bool = False,
only_onnxruntime: bool = False,
verbose=False,
):
"""Optimize Model by OnnxRuntime and/or python fusion logic.

Expand Down Expand Up @@ -265,6 +270,7 @@ def optimize_model(
use_gpu=use_gpu,
opt_level=opt_level,
disabled_optimizers=disabled_optimizers,
verbose=verbose,
)
elif opt_level == 1:
# basic optimizations (like constant folding and cast elimination) are not specified to execution provider.
Expand All @@ -274,6 +280,7 @@ def optimize_model(
use_gpu=False,
opt_level=1,
disabled_optimizers=disabled_optimizers,
verbose=verbose,
)

if only_onnxruntime and not temp_model_path:
Expand Down
49 changes: 43 additions & 6 deletions onnxruntime/test/python/transformers/parity_utilities.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,43 @@
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# -------------------------------------------------------------------------

import argparse
import os
import sys

import numpy
import torch


def parse_arguments(namespace_filter=None):

parser = argparse.ArgumentParser()

# useful EPs that don't require the use of optmizer.py
parser.add_argument(
"-n",
"--no_optimize",
PeixuanZuo marked this conversation as resolved.
Show resolved Hide resolved
required=False,
action="store_false",
default=True,
help="Turn off onnxruntime optimizers (Default off optimizers ON)",
Fixed Show fixed Hide fixed
)

# useful for debugging and viewing state during test runs
parser.add_argument(
"-l",
"--log_verbose",
required=False,
action="store_true",
default=False,
help="Set Onnxruntime log_serverity_level=0 (VERBOSE) ",
)

args, remaining_args = parser.parse_known_args(namespace=namespace_filter)

return args, sys.argv[:1] + remaining_args


def find_transformers_source(sub_dir_paths=[]):
source_dir = os.path.join(
os.path.dirname(__file__),
Expand Down Expand Up @@ -74,13 +103,16 @@ def optimize_onnx(
expected_op=None,
use_gpu=False,
opt_level=None,
verbose=False,
):
if find_transformers_source():
from optimizer import optimize_model
else:
from onnxruntime.transformers.optimizer import optimize_model

onnx_model = optimize_model(input_onnx_path, model_type="gpt2", use_gpu=use_gpu, opt_level=opt_level)
onnx_model = optimize_model(
input_onnx_path, model_type="gpt2", use_gpu=use_gpu, opt_level=opt_level, verbose=verbose
)
onnx_model.save_model_to_file(optimized_onnx_path)

if expected_op is not None:
Expand Down Expand Up @@ -130,21 +162,26 @@ def compare_outputs(torch_outputs, ort_outputs, atol=1e-06, verbose=True):
return is_all_close, max(max_abs_diff)


def create_ort_session(onnx_model_path, use_gpu=True):
def create_ort_session(onnx_model_path, use_gpu=True, optimized=True, verbose=False):
from onnxruntime import GraphOptimizationLevel, InferenceSession, SessionOptions
from onnxruntime import __version__ as onnxruntime_version

sess_options = SessionOptions()
sess_options.graph_optimization_level = GraphOptimizationLevel.ORT_DISABLE_ALL
sess_options.intra_op_num_threads = 2
sess_options.log_severity_level = 2

if verbose:
sess_options.log_severity_level = 0

execution_providers = []

if use_gpu:
if torch.version.cuda:
execution_providers.append("CUDAExecutionProvider")
elif torch.version.hip:
execution_providers.append("MIGraphXExecutionProvider")
if not optimized:
execution_providers.append("MIGraphXExecutionProvider")

execution_providers.append("ROCMExecutionProvider")

execution_providers.append("CPUExecutionProvider")
Expand Down Expand Up @@ -174,7 +211,7 @@ def run_parity(
passed_cases = 0
max_diffs = []
printed = False # print only one sample
ort_session = create_ort_session(onnx_model_path, device.type == "cuda")
ort_session = create_ort_session(onnx_model_path, device.type == "cuda", optimized=optimized, verbose=verbose)
for i in range(test_cases):
input_hidden_states = create_inputs(batch_size, sequence_length, hidden_size, float16, device)

Expand Down
26 changes: 20 additions & 6 deletions onnxruntime/test/python/transformers/test_parity_gelu.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,7 @@ def run(
formula=0,
sequence_length=2,
fp32_gelu_op=True,
verbose=False,
):
test_name = f"device={device}, float16={float16}, optimized={optimized}, batch_size={batch_size}, sequence_length={sequence_length}, hidden_size={hidden_size}, formula={formula}, fp32_gelu_op={fp32_gelu_op}"
print(f"\nTesting: {test_name}")
Expand All @@ -108,6 +109,7 @@ def run(
Gelu.get_fused_op(formula),
use_gpu=use_gpu,
opt_level=2 if use_gpu else None,
verbose=verbose,
)
onnx_path = optimized_onnx_path
else:
Expand All @@ -123,7 +125,7 @@ def run(
device,
optimized,
test_cases,
verbose=False,
verbose,
)

# clean up onnx file
Expand All @@ -135,8 +137,10 @@ def run(


class TestGeluParity(unittest.TestCase):
verbose = False
optimized = True

def setUp(self):
self.optimized = True # Change it to False if you want to test parity of non optimized ONNX
self.test_cases = 100 # Number of test cases per test run
self.sequence_length = 2
self.hidden_size = 768
Expand All @@ -159,6 +163,7 @@ def run_test(
formula,
enable_assert=True,
fp32_gelu_op=True,
verbose=False,
):
if float16 and device.type == "cpu": # CPU does not support FP16
return
Expand All @@ -172,11 +177,12 @@ def run_test(
formula,
self.sequence_length,
fp32_gelu_op,
verbose,
)
if enable_assert:
self.assertTrue(num_failure == 0, "Failed: " + test_name)

def run_one(self, optimized, device, hidden_size=768, formula=0):
def run_one(self, optimized, device, hidden_size=768, formula=0, verbose=False):
for batch_size in [4]:
self.run_test(
batch_size,
Expand All @@ -186,6 +192,7 @@ def run_one(self, optimized, device, hidden_size=768, formula=0):
device=device,
formula=formula,
enable_assert=formula in self.formula_must_pass,
verbose=verbose,
)

self.run_test(
Expand All @@ -197,6 +204,7 @@ def run_one(self, optimized, device, hidden_size=768, formula=0):
formula=formula,
enable_assert=formula in self.formula_must_pass,
fp32_gelu_op=True,
verbose=verbose,
)

self.run_test(
Expand All @@ -208,12 +216,13 @@ def run_one(self, optimized, device, hidden_size=768, formula=0):
formula=formula,
enable_assert=formula in self.formula_must_pass,
fp32_gelu_op=False,
verbose=verbose,
)

def test_cpu(self):
cpu = torch.device("cpu")
for i in self.formula_to_test:
self.run_one(self.optimized, cpu, hidden_size=self.hidden_size, formula=i)
self.run_one(self.optimized, cpu, hidden_size=self.hidden_size, formula=i, verbose=self.verbose)

def test_cuda(self):
if not torch.cuda.is_available():
Expand All @@ -223,8 +232,13 @@ def test_cuda(self):
else:
gpu = torch.device("cuda")
for i in self.formula_to_test:
self.run_one(self.optimized, gpu, hidden_size=self.hidden_size, formula=i)
self.run_one(self.optimized, gpu, hidden_size=self.hidden_size, formula=i, verbose=self.verbose)


if __name__ == "__main__":
unittest.main()
args, remaining_args = parse_arguments(namespace_filter=unittest)

TestGeluParity.verbose = args.log_verbose
TestGeluParity.optimized = args.no_optimize
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The logic seems not correct. Shall it be optimized = not no_optimize?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Changed this so no_optimize comes out as optimize. This was just the var output of --no_optimize from argparse


unittest.main(argv=remaining_args)
Loading