-
Notifications
You must be signed in to change notification settings - Fork 3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Update some op docs for release (#17626)
### Description <!-- Describe your changes. --> Update some ops docs for 1.16 release ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. -->
- Loading branch information
1 parent
7017289
commit acc1b8b
Showing
4 changed files
with
282 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
139 changes: 139 additions & 0 deletions
139
docs/reference/operators/mobile_package_op_type_support_1.15.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
--- | ||
title: ORT 1.15 Mobile Package Operators | ||
parent: Operators | ||
grand_parent: Reference | ||
nav_exclude: true | ||
--- | ||
|
||
# ONNX Runtime Mobile Pre-Built Package Operator and Type Support | ||
|
||
## Supported operators and types | ||
|
||
The supported operators and types are based on what is required to support float32 and quantized versions of popular models. The full list of input models used to determine this list is available [here](https://github.com/microsoft/onnxruntime/blob/main/tools/ci_build/github/android/mobile_package.required_operators.readme.txt) | ||
|
||
## Supported data input types | ||
|
||
- float | ||
- int8_t | ||
- uint8_t | ||
|
||
NOTE: Operators used to manipulate dimensions and indices will support int32 and int64. | ||
|
||
## Supported Operators | ||
|
||
|Operator|Opsets| | ||
|--------|------| | ||
|**ai.onnx**|| | ||
|ai.onnx:Abs|12, 13, 14, 15| | ||
|ai.onnx:Add|12, 13, 14, 15| | ||
|ai.onnx:And|12, 13, 14, 15| | ||
|ai.onnx:ArgMax|12, 13, 14, 15| | ||
|ai.onnx:ArgMin|12, 13, 14, 15| | ||
|ai.onnx:AveragePool|12, 13, 14, 15| | ||
|ai.onnx:Cast|12, 13, 14, 15| | ||
|ai.onnx:Ceil|12, 13, 14, 15| | ||
|ai.onnx:Clip|12, 13, 14, 15| | ||
|ai.onnx:Concat|12, 13, 14, 15| | ||
|ai.onnx:ConstantOfShape|12, 13, 14, 15| | ||
|ai.onnx:Conv|12, 13, 14, 15| | ||
|ai.onnx:ConvTranspose|12, 13, 14, 15| | ||
|ai.onnx:Cos|12, 13, 14, 15| | ||
|ai.onnx:CumSum|12, 13, 14, 15| | ||
|ai.onnx:DepthToSpace|12, 13, 14, 15| | ||
|ai.onnx:DequantizeLinear|12, 13, 14, 15| | ||
|ai.onnx:Div|12, 13, 14, 15| | ||
|ai.onnx:DynamicQuantizeLinear|12, 13, 14, 15| | ||
|ai.onnx:Elu|12, 13, 14, 15| | ||
|ai.onnx:Equal|12, 13, 14, 15| | ||
|ai.onnx:Erf|12, 13, 14, 15| | ||
|ai.onnx:Exp|12, 13, 14, 15| | ||
|ai.onnx:Expand|12, 13, 14, 15| | ||
|ai.onnx:Flatten|12, 13, 14, 15| | ||
|ai.onnx:Floor|12, 13, 14, 15| | ||
|ai.onnx:Gather|12, 13, 14, 15| | ||
|ai.onnx:GatherND|12, 13, 14, 15| | ||
|ai.onnx:Gemm|12, 13, 14, 15| | ||
|ai.onnx:GlobalAveragePool|12, 13, 14, 15| | ||
|ai.onnx:Greater|12, 13, 14, 15| | ||
|ai.onnx:GreaterOrEqual|12, 13, 14, 15| | ||
|ai.onnx:HardSigmoid|12, 13, 14, 15| | ||
|ai.onnx:Identity|12, 13, 14, 15| | ||
|ai.onnx:If|12, 13, 14, 15| | ||
|ai.onnx:InstanceNormalization|12, 13, 14, 15| | ||
|ai.onnx:LRN|12, 13, 14, 15| | ||
|ai.onnx:LayerNormalization|1| | ||
|ai.onnx:LeakyRelu|12, 13, 14, 15| | ||
|ai.onnx:Less|12, 13, 14, 15| | ||
|ai.onnx:LessOrEqual|12, 13, 14, 15| | ||
|ai.onnx:Log|12, 13, 14, 15| | ||
|ai.onnx:LogSoftmax|12, 13, 14, 15| | ||
|ai.onnx:Loop|12, 13, 14, 15| | ||
|ai.onnx:MatMul|12, 13, 14, 15| | ||
|ai.onnx:MatMulInteger|12, 13, 14, 15| | ||
|ai.onnx:Max|12, 13, 14, 15| | ||
|ai.onnx:MaxPool|12, 13, 14, 15| | ||
|ai.onnx:Mean|12, 13, 14, 15| | ||
|ai.onnx:Min|12, 13, 14, 15| | ||
|ai.onnx:Mul|12, 13, 14, 15| | ||
|ai.onnx:Neg|12, 13, 14, 15| | ||
|ai.onnx:NonMaxSuppression|12, 13, 14, 15| | ||
|ai.onnx:NonZero|12, 13, 14, 15| | ||
|ai.onnx:Not|12, 13, 14, 15| | ||
|ai.onnx:Or|12, 13, 14, 15| | ||
|ai.onnx:PRelu|12, 13, 14, 15| | ||
|ai.onnx:Pad|12, 13, 14, 15| | ||
|ai.onnx:Pow|12, 13, 14, 15| | ||
|ai.onnx:QLinearConv|12, 13, 14, 15| | ||
|ai.onnx:QLinearMatMul|12, 13, 14, 15| | ||
|ai.onnx:QuantizeLinear|12, 13, 14, 15| | ||
|ai.onnx:Range|12, 13, 14, 15| | ||
|ai.onnx:Reciprocal|12, 13, 14, 15| | ||
|ai.onnx:ReduceMax|12, 13, 14, 15| | ||
|ai.onnx:ReduceMean|12, 13, 14, 15| | ||
|ai.onnx:ReduceMin|12, 13, 14, 15| | ||
|ai.onnx:ReduceProd|12, 13, 14, 15| | ||
|ai.onnx:ReduceSum|12, 13, 14, 15| | ||
|ai.onnx:Relu|12, 13, 14, 15| | ||
|ai.onnx:Reshape|12, 13, 14, 15| | ||
|ai.onnx:Resize|12, 13, 14, 15| | ||
|ai.onnx:ReverseSequence|12, 13, 14, 15| | ||
|ai.onnx:Round|12, 13, 14, 15| | ||
|ai.onnx:Scan|12, 13, 14, 15| | ||
|ai.onnx:ScatterND|12, 13, 14, 15| | ||
|ai.onnx:Shape|12, 13, 14, 15| | ||
|ai.onnx:Sigmoid|12, 13, 14, 15| | ||
|ai.onnx:Sin|12, 13, 14, 15| | ||
|ai.onnx:Size|12, 13, 14, 15| | ||
|ai.onnx:Slice|12, 13, 14, 15| | ||
|ai.onnx:Softmax|12, 13, 14, 15| | ||
|ai.onnx:SpaceToDepth|12, 13, 14, 15| | ||
|ai.onnx:Split|12, 13, 14, 15| | ||
|ai.onnx:Sqrt|12, 13, 14, 15| | ||
|ai.onnx:Squeeze|12, 13, 14, 15| | ||
|ai.onnx:Sub|12, 13, 14, 15| | ||
|ai.onnx:Sum|12, 13, 14, 15| | ||
|ai.onnx:Tanh|12, 13, 14, 15| | ||
|ai.onnx:ThresholdedRelu|12, 13, 14, 15| | ||
|ai.onnx:Tile|12, 13, 14, 15| | ||
|ai.onnx:TopK|12, 13, 14, 15| | ||
|ai.onnx:Transpose|12, 13, 14, 15| | ||
|ai.onnx:Unique|12, 13, 14, 15| | ||
|ai.onnx:Unsqueeze|12, 13, 14, 15| | ||
|ai.onnx:Where|12, 13, 14, 15| | ||
||| | ||
|**com.microsoft**|| | ||
|com.microsoft:DynamicQuantizeMatMul|1| | ||
|com.microsoft:FusedConv|1| | ||
|com.microsoft:FusedGemm|1| | ||
|com.microsoft:FusedMatMul|1| | ||
|com.microsoft:Gelu|1| | ||
|com.microsoft:MatMulIntegerToFloat|1| | ||
|com.microsoft:NhwcMaxPool|1| | ||
|com.microsoft:QLinearAdd|1| | ||
|com.microsoft:QLinearAveragePool|1| | ||
|com.microsoft:QLinearConv|1| | ||
|com.microsoft:QLinearGlobalAveragePool|1| | ||
|com.microsoft:QLinearLeakyRelu|1| | ||
|com.microsoft:QLinearMul|1| | ||
|com.microsoft:QLinearSigmoid|1| | ||
||| |
139 changes: 139 additions & 0 deletions
139
docs/reference/operators/mobile_package_op_type_support_1.16.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
--- | ||
title: ORT 1.16 Mobile Package Operators | ||
parent: Operators | ||
grand_parent: Reference | ||
nav_exclude: true | ||
--- | ||
|
||
# ONNX Runtime Mobile Pre-Built Package Operator and Type Support | ||
|
||
## Supported operators and types | ||
|
||
The supported operators and types are based on what is required to support float32 and quantized versions of popular models. The full list of input models used to determine this list is available [here](https://github.com/microsoft/onnxruntime/blob/main/tools/ci_build/github/android/mobile_package.required_operators.readme.txt) | ||
|
||
## Supported data input types | ||
|
||
- float | ||
- int8_t | ||
- uint8_t | ||
|
||
NOTE: Operators used to manipulate dimensions and indices will support int32 and int64. | ||
|
||
## Supported Operators | ||
|
||
|Operator|Opsets| | ||
|--------|------| | ||
|**ai.onnx**|| | ||
|ai.onnx:Abs|12, 13, 14, 15| | ||
|ai.onnx:Add|12, 13, 14, 15| | ||
|ai.onnx:And|12, 13, 14, 15| | ||
|ai.onnx:ArgMax|12, 13, 14, 15| | ||
|ai.onnx:ArgMin|12, 13, 14, 15| | ||
|ai.onnx:AveragePool|12, 13, 14, 15| | ||
|ai.onnx:Cast|12, 13, 14, 15| | ||
|ai.onnx:Ceil|12, 13, 14, 15| | ||
|ai.onnx:Clip|12, 13, 14, 15| | ||
|ai.onnx:Concat|12, 13, 14, 15| | ||
|ai.onnx:ConstantOfShape|12, 13, 14, 15| | ||
|ai.onnx:Conv|12, 13, 14, 15| | ||
|ai.onnx:ConvTranspose|12, 13, 14, 15| | ||
|ai.onnx:Cos|12, 13, 14, 15| | ||
|ai.onnx:CumSum|12, 13, 14, 15| | ||
|ai.onnx:DepthToSpace|12, 13, 14, 15| | ||
|ai.onnx:DequantizeLinear|12, 13, 14, 15| | ||
|ai.onnx:Div|12, 13, 14, 15| | ||
|ai.onnx:DynamicQuantizeLinear|12, 13, 14, 15| | ||
|ai.onnx:Elu|12, 13, 14, 15| | ||
|ai.onnx:Equal|12, 13, 14, 15| | ||
|ai.onnx:Erf|12, 13, 14, 15| | ||
|ai.onnx:Exp|12, 13, 14, 15| | ||
|ai.onnx:Expand|12, 13, 14, 15| | ||
|ai.onnx:Flatten|12, 13, 14, 15| | ||
|ai.onnx:Floor|12, 13, 14, 15| | ||
|ai.onnx:Gather|12, 13, 14, 15| | ||
|ai.onnx:GatherND|12, 13, 14, 15| | ||
|ai.onnx:Gemm|12, 13, 14, 15| | ||
|ai.onnx:GlobalAveragePool|12, 13, 14, 15| | ||
|ai.onnx:Greater|12, 13, 14, 15| | ||
|ai.onnx:GreaterOrEqual|12, 13, 14, 15| | ||
|ai.onnx:HardSigmoid|12, 13, 14, 15| | ||
|ai.onnx:Identity|12, 13, 14, 15| | ||
|ai.onnx:If|12, 13, 14, 15| | ||
|ai.onnx:InstanceNormalization|12, 13, 14, 15| | ||
|ai.onnx:LRN|12, 13, 14, 15| | ||
|ai.onnx:LayerNormalization|1| | ||
|ai.onnx:LeakyRelu|12, 13, 14, 15| | ||
|ai.onnx:Less|12, 13, 14, 15| | ||
|ai.onnx:LessOrEqual|12, 13, 14, 15| | ||
|ai.onnx:Log|12, 13, 14, 15| | ||
|ai.onnx:LogSoftmax|12, 13, 14, 15| | ||
|ai.onnx:Loop|12, 13, 14, 15| | ||
|ai.onnx:MatMul|12, 13, 14, 15| | ||
|ai.onnx:MatMulInteger|12, 13, 14, 15| | ||
|ai.onnx:Max|12, 13, 14, 15| | ||
|ai.onnx:MaxPool|12, 13, 14, 15| | ||
|ai.onnx:Mean|12, 13, 14, 15| | ||
|ai.onnx:Min|12, 13, 14, 15| | ||
|ai.onnx:Mul|12, 13, 14, 15| | ||
|ai.onnx:Neg|12, 13, 14, 15| | ||
|ai.onnx:NonMaxSuppression|12, 13, 14, 15| | ||
|ai.onnx:NonZero|12, 13, 14, 15| | ||
|ai.onnx:Not|12, 13, 14, 15| | ||
|ai.onnx:Or|12, 13, 14, 15| | ||
|ai.onnx:PRelu|12, 13, 14, 15| | ||
|ai.onnx:Pad|12, 13, 14, 15| | ||
|ai.onnx:Pow|12, 13, 14, 15| | ||
|ai.onnx:QLinearConv|12, 13, 14, 15| | ||
|ai.onnx:QLinearMatMul|12, 13, 14, 15| | ||
|ai.onnx:QuantizeLinear|12, 13, 14, 15| | ||
|ai.onnx:Range|12, 13, 14, 15| | ||
|ai.onnx:Reciprocal|12, 13, 14, 15| | ||
|ai.onnx:ReduceMax|12, 13, 14, 15| | ||
|ai.onnx:ReduceMean|12, 13, 14, 15| | ||
|ai.onnx:ReduceMin|12, 13, 14, 15| | ||
|ai.onnx:ReduceProd|12, 13, 14, 15| | ||
|ai.onnx:ReduceSum|12, 13, 14, 15| | ||
|ai.onnx:Relu|12, 13, 14, 15| | ||
|ai.onnx:Reshape|12, 13, 14, 15| | ||
|ai.onnx:Resize|12, 13, 14, 15| | ||
|ai.onnx:ReverseSequence|12, 13, 14, 15| | ||
|ai.onnx:Round|12, 13, 14, 15| | ||
|ai.onnx:Scan|12, 13, 14, 15| | ||
|ai.onnx:ScatterND|12, 13, 14, 15| | ||
|ai.onnx:Shape|12, 13, 14, 15| | ||
|ai.onnx:Sigmoid|12, 13, 14, 15| | ||
|ai.onnx:Sin|12, 13, 14, 15| | ||
|ai.onnx:Size|12, 13, 14, 15| | ||
|ai.onnx:Slice|12, 13, 14, 15| | ||
|ai.onnx:Softmax|12, 13, 14, 15| | ||
|ai.onnx:SpaceToDepth|12, 13, 14, 15| | ||
|ai.onnx:Split|12, 13, 14, 15| | ||
|ai.onnx:Sqrt|12, 13, 14, 15| | ||
|ai.onnx:Squeeze|12, 13, 14, 15| | ||
|ai.onnx:Sub|12, 13, 14, 15| | ||
|ai.onnx:Sum|12, 13, 14, 15| | ||
|ai.onnx:Tanh|12, 13, 14, 15| | ||
|ai.onnx:ThresholdedRelu|12, 13, 14, 15| | ||
|ai.onnx:Tile|12, 13, 14, 15| | ||
|ai.onnx:TopK|12, 13, 14, 15| | ||
|ai.onnx:Transpose|12, 13, 14, 15| | ||
|ai.onnx:Unique|12, 13, 14, 15| | ||
|ai.onnx:Unsqueeze|12, 13, 14, 15| | ||
|ai.onnx:Where|12, 13, 14, 15| | ||
||| | ||
|**com.microsoft**|| | ||
|com.microsoft:DynamicQuantizeMatMul|1| | ||
|com.microsoft:FusedConv|1| | ||
|com.microsoft:FusedGemm|1| | ||
|com.microsoft:FusedMatMul|1| | ||
|com.microsoft:Gelu|1| | ||
|com.microsoft:MatMulIntegerToFloat|1| | ||
|com.microsoft:NhwcMaxPool|1| | ||
|com.microsoft:QLinearAdd|1| | ||
|com.microsoft:QLinearAveragePool|1| | ||
|com.microsoft:QLinearConv|1| | ||
|com.microsoft:QLinearGlobalAveragePool|1| | ||
|com.microsoft:QLinearLeakyRelu|1| | ||
|com.microsoft:QLinearMul|1| | ||
|com.microsoft:QLinearSigmoid|1| | ||
||| |