Skip to content

Commit

Permalink
pick changes from onnx/onnx#6195 to fix heap-buffer-overflow in onnx:…
Browse files Browse the repository at this point in the history
…:convPoolShapeInference (#21507)

### Description
onnx 1.16.2 is not available before ort 1.19.0 code freeze. Thus pick
the needed change as patch
  • Loading branch information
liqunfu authored Jul 27, 2024
1 parent 7e23212 commit a4d3a1c
Show file tree
Hide file tree
Showing 3 changed files with 447 additions and 48 deletions.
383 changes: 383 additions & 0 deletions cmake/patches/onnx/onnx.patch
Original file line number Diff line number Diff line change
Expand Up @@ -86,3 +86,386 @@ index 0aab3e26..398ac2d6 100644
+#endif
+
#endif // ! ONNX_ONNX_PB_H
diff --git a/onnx/defs/math/defs.cc b/onnx/defs/math/defs.cc
index c315a2a7..58963154 100644
--- a/onnx/defs/math/defs.cc
+++ b/onnx/defs/math/defs.cc
@@ -3472,6 +3472,9 @@ ONNX_OPERATOR_SET_SCHEMA(
}

auto& input_shape = getInputShape(ctx, 0);
+ if (input_shape.dim_size() < 2) {
+ fail_shape_inference("First input should have at least 2 dimensions in ", ctx.getDisplayName(), ".");
+ }
auto signal_dim = input_shape.dim(1);
if (!signal_dim.has_dim_value()) {
return;
diff --git a/onnx/defs/nn/defs.cc b/onnx/defs/nn/defs.cc
index be6a851d..fad595d0 100644
--- a/onnx/defs/nn/defs.cc
+++ b/onnx/defs/nn/defs.cc
@@ -126,6 +126,9 @@ void convPoolShapeInference(
residual -= stride;
}
}
+ if (i >= static_cast<int>(effective_kernel_shape.size())) {
+ fail_shape_inference("kernel shape should have ", input_dims_size, " values in ", ctx.getDisplayName(), ".");
+ }
int64_t total_pad = residual == 0 ? effective_kernel_shape[i] - stride : effective_kernel_shape[i] - residual;
if (total_pad < 0)
total_pad = 0;
@@ -959,19 +962,21 @@ ONNX_OPERATOR_SET_SCHEMA(
auto w_type = ctx.getInputType(3);
if (nullptr == x_type || nullptr == w_type || x_type->value_case() != TypeProto::kTensorType ||
w_type->value_case() != TypeProto::kTensorType) {
- fail_type_inference("inputs are expected to have tensor type.");
+ fail_type_inference("inputs are expected to have tensor type in ", ctx.getDisplayName(), ".");
}

auto x_zero_point_type = ctx.getInputType(2);
if (nullptr == x_zero_point_type ||
x_zero_point_type->tensor_type().elem_type() != x_type->tensor_type().elem_type()) {
- fail_type_inference("input and zero_point pair is expected to have be same type.");
+ fail_type_inference(
+ "input and zero_point pair is expected to have be same type in ", ctx.getDisplayName(), ".");
}

auto w_zero_point_type = ctx.getInputType(5);
if (nullptr == w_zero_point_type ||
w_zero_point_type->tensor_type().elem_type() != w_type->tensor_type().elem_type()) {
- fail_type_inference("weight and zero_point pair is expected to have same type.");
+ fail_type_inference(
+ "weight and zero_point pair is expected to have same type in ", ctx.getDisplayName(), ".");
}

propagateElemTypeFromInputToOutput(ctx, 7, 0);
@@ -2647,7 +2652,8 @@ ONNX_OPERATOR_SET_SCHEMA(
if (!hasNInputShapes(ctx, 1)) {
return;
}
- auto& input_shape = ctx.getInputType(0)->tensor_type().shape();
+
+ auto& input_shape = getInputShape(ctx, 0);
int64_t input_ndim = input_shape.dim_size();
int64_t axis = -1;
auto axis_proto = ctx.getAttribute("axis");
@@ -2659,7 +2665,16 @@ ONNX_OPERATOR_SET_SCHEMA(
// positive value.
axis += input_ndim;
}
-
+ if (axis < 0) {
+ fail_shape_inference(
+ "Unexpected axis value (",
+ axis,
+ ") rank of first input is ",
+ input_ndim,
+ " in ",
+ ctx.getDisplayName(),
+ ".");
+ }
if (ctx.getNumOutputs() > 1) {
auto mean_shape = ctx.getOutputType(1)->mutable_tensor_type()->mutable_shape();
mean_shape->CopyFrom(input_shape);
diff --git a/onnx/defs/nn/old.cc b/onnx/defs/nn/old.cc
index 57f8e2a4..8b2dc07f 100644
--- a/onnx/defs/nn/old.cc
+++ b/onnx/defs/nn/old.cc
@@ -201,6 +201,9 @@ void convPoolShapeInference_opset19(
residual -= stride;
}
}
+ if (i >= static_cast<int>(effective_kernel_shape.size())) {
+ fail_shape_inference("kernel shape should have ", input_dims_size, " values in ", ctx.getDisplayName(), ".");
+ }
int64_t total_pad = residual == 0 ? effective_kernel_shape[i] - stride : effective_kernel_shape[i] - residual;
if (total_pad < 0)
total_pad = 0;
diff --git a/onnx/defs/shape_inference.h b/onnx/defs/shape_inference.h
index a80473b3..d1bcd401 100644
--- a/onnx/defs/shape_inference.h
+++ b/onnx/defs/shape_inference.h
@@ -105,6 +105,10 @@ struct InferenceContext {
virtual const SparseTensorProto* getInputSparseData(size_t index) const = 0;
// Gets the shape inputs computed by partial data propagation.
virtual const TensorShapeProto* getSymbolicInput(size_t index) const = 0;
+ // To display a name the user can use to narrow its search.
+ virtual std::string getDisplayName() const {
+ return "";
+ }
};

// We use data propagation to perform partial evaluation of the model, to compute statically
@@ -263,7 +267,15 @@ inline void propagateElemTypeFromDtypeToOutput(
} else {
// This is not expected to happen
fail_type_inference(
- "Output ", outputIndex, " expected to have: ", expected_value_case, " or UNDEFINED. Got: ", output_value_case);
+ "Output ",
+ outputIndex,
+ " expected to have: ",
+ expected_value_case,
+ " or UNDEFINED. Got: ",
+ output_value_case,
+ " in ",
+ ctx.getDisplayName(),
+ ".");
}
}

@@ -277,18 +289,18 @@ inline void propagateElemTypeFromDtypeToOutput(InferenceContext& ctx, const Attr
const auto attr_type = attr->type();
if (attr_type == AttributeProto::TENSOR) {
if (attr->t().dims().size() != 1) {
- fail_type_inference("Attribute expected to have a one-dim tensor");
+ fail_type_inference("Attribute expected to have a one-dim tensor in ", ctx.getDisplayName(), ".");
}
data_type = attr->t().data_type();
expected_value_case = TypeProto::kTensorType;
} else if (attr_type == AttributeProto::SPARSE_TENSOR) {
if (attr->sparse_tensor().dims().size() != 1) {
- fail_type_inference("Attribute expected to have a one-dim sparse tensor");
+ fail_type_inference("Attribute expected to have a one-dim sparse tensor in ", ctx.getDisplayName(), ".");
}
data_type = attr->sparse_tensor().values().data_type();
expected_value_case = TypeProto::kSparseTensorType;
} else {
- fail_type_inference("Attribute expected to have tensor or sparse tensor type");
+ fail_type_inference("Attribute expected to have tensor or sparse tensor type in ", ctx.getDisplayName(), ".");
}

propagateElemTypeFromDtypeToOutput(ctx, data_type, outputIndex, expected_value_case);
@@ -326,7 +338,10 @@ inline const TensorShapeProto& getInputShape(const InferenceContext& ctx, size_t
const auto* input_type = ctx.getInputType(n);
const auto value_case = input_type->value_case();
if (value_case != TypeProto::kTensorType && value_case != TypeProto::kSparseTensorType) {
- fail_type_inference("Attribute expected to have tensor or sparse tensor type");
+ fail_type_inference("Input ", n, "expected to be a tensor or a sparse tensor type in ", ctx.getDisplayName(), ".");
+ }
+ if (!hasShape(*input_type)) {
+ fail_shape_inference("Input ", n, " must have a non null shape in ", ctx.getDisplayName(), ".");
}
if (value_case == TypeProto::kTensorType) {
return input_type->tensor_type().shape();
@@ -344,7 +359,7 @@ inline const TensorShapeProto* getOptionalInputShape(InferenceContext& ctx, size

const auto value_case = input_type->value_case();
if (value_case != TypeProto::kTensorType && value_case != TypeProto::kSparseTensorType) {
- fail_type_inference("Attribute expected to have tensor or sparse tensor type");
+ fail_type_inference("Input ", n, "expected to be a tensor or a sparse tensor type in ", ctx.getDisplayName(), ".");
}
if (value_case == TypeProto::kTensorType) {
return &input_type->tensor_type().shape();
@@ -372,7 +387,10 @@ inline void appendSingleDimCopiedFromInputTypeToOutputType(
" does not match type of output: ",
outputIndex,
"type: ",
- output_value_case);
+ output_value_case,
+ " in ",
+ ctx.getDisplayName(),
+ ".");
}
if (TypeProto::kTensorType == input_value_case) {
auto* dim = output_type->mutable_tensor_type()->mutable_shape()->add_dim();
@@ -382,7 +400,13 @@ inline void appendSingleDimCopiedFromInputTypeToOutputType(
*dim = input_type->sparse_tensor_type().shape().dim(static_cast<int>(fromDimIndex));
} else {
fail_type_inference(
- "Input ", inputIndex, " and Output ", outputIndex, " expected to have tensor or sparse tensor type");
+ "Input ",
+ inputIndex,
+ " and Output ",
+ outputIndex,
+ " expected to have tensor or sparse tensor type in ",
+ ctx.getDisplayName(),
+ ".");
}
}

@@ -440,7 +464,14 @@ updateOutputElemType(InferenceContext& ctx, size_t outputIndex, int32_t elemType
setTensorElementType(elemType, expected_type, *output_type);
} else {
// This is not expected to happen
- fail_type_inference("Output ", outputIndex, " expected to have tensor or sparse tensor type: ", expected_type);
+ fail_type_inference(
+ "Output ",
+ outputIndex,
+ " expected to have tensor or sparse tensor type: ",
+ expected_type,
+ " in ",
+ ctx.getDisplayName(),
+ ".");
}
}

@@ -462,16 +493,17 @@ inline void propagateElemTypeFromAttributeToOutput(
updateOutputElemType(ctx, outputIndex, default_value, expected_type);
return;
} else {
- fail_type_inference("Value of attribute ", attributeName, " not specified");
+ fail_type_inference("Value of attribute ", attributeName, " not specified in ", ctx.getDisplayName(), ".");
}
}
if (!attr_proto->has_i()) {
- fail_type_inference("Attribute ", attributeName, " should be of integer type and specify a type.");
+ fail_type_inference(
+ "Attribute ", attributeName, " should be of integer type and specify a type in ", ctx.getDisplayName(), ".");
}
auto attr_value = attr_proto->i();
auto elem_type = static_cast<TensorProto_DataType>(attr_value);
if (!TensorProto_DataType_IsValid(elem_type)) {
- fail_type_inference("Attribute ", attributeName, " does not specify a valid type.");
+ fail_type_inference("Attribute ", attributeName, " does not specify a valid type in ", ctx.getDisplayName(), ".");
}
updateOutputElemType(ctx, outputIndex, elem_type, expected_type);
}
@@ -497,7 +529,7 @@ inline TensorShapeProto*
getOutputShape(InferenceContext& ctx, size_t n, TypeProto::ValueCase default_type = TypeProto::kTensorType) {
auto output_type = ctx.getOutputType(n);
if (output_type == nullptr) {
- fail_type_inference("Output ", n, " expected to have tensor or sparse type");
+ fail_type_inference("Output ", n, " expected to have tensor or sparse type in ", ctx.getDisplayName(), ".");
}
const auto output_value_case = output_type->value_case();
if (output_value_case == TypeProto::kTensorType || output_value_case == TypeProto::kSparseTensorType) {
@@ -505,7 +537,7 @@ getOutputShape(InferenceContext& ctx, size_t n, TypeProto::ValueCase default_typ
} else if (output_value_case == TypeProto::VALUE_NOT_SET) {
return getTensorMutableShape(default_type, *output_type);
} else {
- fail_type_inference("Output ", n, " expected to have tensor type");
+ fail_type_inference("Output ", n, " expected to have tensor type in ", ctx.getDisplayName(), ".");
}
}

@@ -562,13 +594,13 @@ inline void propagateShapeFromAttributeToOutput(
auto attr_proto = ctx.getAttribute(attributeName);
if ((nullptr == attr_proto) || (!attr_proto->has_type()) ||
(attr_proto->type() != AttributeProto_AttributeType_INTS)) {
- fail_shape_inference("Attribute ", attributeName, " should specify a shape");
+ fail_shape_inference("Attribute ", attributeName, " should specify a shape in ", ctx.getDisplayName(), ".");
}
auto& int_list = attr_proto->ints();
TensorShapeProto shape;
for (auto dim_size : int_list) {
if (dim_size < 0) {
- fail_shape_inference("Negative values are not allowed in a shape specification");
+ fail_shape_inference("Negative values are not allowed in a shape specification in ", ctx.getDisplayName(), ".");
}
shape.add_dim()->set_dim_value(dim_size);
}
@@ -745,7 +777,16 @@ inline void checkInputRank(InferenceContext& ctx, size_t input_index, int expect
if (hasInputShape(ctx, input_index)) {
auto rank = getInputShape(ctx, input_index).dim_size();
if (rank != expected_rank) {
- fail_shape_inference("Input ", input_index, " expected to have rank ", expected_rank, " but has rank ", rank);
+ fail_shape_inference(
+ "Input ",
+ input_index,
+ " expected to have rank ",
+ expected_rank,
+ " but has rank ",
+ rank,
+ " in ",
+ ctx.getDisplayName(),
+ ".");
}
}
}
@@ -798,7 +839,15 @@ inline void unifyInputDim(InferenceContext& ctx, size_t input_index, int dim_ind
// This shape is expected to have rank > dim_index:
if (input_shape.dim_size() <= dim_index) {
fail_shape_inference(
- "Input ", input_index, " expected to have rank >", dim_index, " but has rank ", input_shape.dim_size());
+ "Input ",
+ input_index,
+ " expected to have rank >",
+ dim_index,
+ " but has rank ",
+ input_shape.dim_size(),
+ " in ",
+ ctx.getDisplayName(),
+ ".");
}
const Dim& input_dim = input_shape.dim(dim_index);
// Now, unify dim and input_dim:
diff --git a/onnx/shape_inference/implementation.cc b/onnx/shape_inference/implementation.cc
index 8723dcd4..8249fc59 100644
--- a/onnx/shape_inference/implementation.cc
+++ b/onnx/shape_inference/implementation.cc
@@ -906,7 +906,7 @@ struct FunctionInferenceContext : public InferenceContext {
const std::vector<TypeProto>& input_types,
const std::vector<AttributeProto>& attributes,
const ShapeInferenceOptions& options)
- : input_types_(input_types), options_(options) {
+ : input_types_(input_types), options_(options), func_proto_(&func_proto) {
for (const auto& attr : attributes) {
attributesByName_[attr.name()] = &attr;
}
@@ -971,11 +971,25 @@ struct FunctionInferenceContext : public InferenceContext {
return std::move(output_types_);
}

+ std::string getDisplayName() const override {
+ if (func_proto_ == nullptr)
+ return "";
+ if (func_proto_->domain().empty()) {
+ if (func_proto_->name().empty())
+ return "";
+ return MakeString("function ", func_proto_->name());
+ }
+ if (func_proto_->name().empty())
+ return MakeString("function [", func_proto_->domain(), "]");
+ return MakeString("function ", func_proto_->name(), "[", func_proto_->domain(), "]");
+ }
+
private:
const std::vector<TypeProto>& input_types_;
std::vector<TypeProto> output_types_;
std::unordered_map<std::string, const AttributeProto*> attributesByName_;
ShapeInferenceOptions options_;
+ const FunctionProto* func_proto_;
};

std::vector<TypeProto> InferFunctionOutputTypes(
diff --git a/onnx/shape_inference/implementation.h b/onnx/shape_inference/implementation.h
index 2c63c910..b0e4c32d 100644
--- a/onnx/shape_inference/implementation.h
+++ b/onnx/shape_inference/implementation.h
@@ -146,7 +146,7 @@ struct InferenceContextImpl : public InferenceContext {
const ShapeInferenceOptions& options,
DataValueMap* generatedShapeData = nullptr,
GraphInferenceContext* graphInferenceContext = nullptr)
- : graphInferenceContext_{graphInferenceContext}, options_(options) {
+ : graphInferenceContext_{graphInferenceContext}, options_(options), node_(&n) {
for (auto& attr : *n.mutable_attribute()) {
attributesByName_[attr.name()] = &attr;
if (attr.has_g()) {
@@ -277,6 +277,19 @@ struct InferenceContextImpl : public InferenceContext {
return inferencer;
}

+ std::string getDisplayName() const override {
+ if (node_ == nullptr)
+ return "";
+ if (node_->domain().empty()) {
+ if (node_->name().empty())
+ return MakeString("node ", node_->op_type());
+ return MakeString("node ", node_->op_type(), " (", node_->name(), ")");
+ }
+ if (node_->name().empty())
+ return MakeString("node ", node_->op_type(), "[", node_->domain(), "]");
+ return MakeString("node ", node_->op_type(), "[", node_->domain(), "]", " (", node_->name(), ")");
+ }
+
std::vector<const TensorProto*> allInputData_;
std::vector<const SparseTensorProto*> allInputSparseData_;
std::vector<const TensorShapeProto*> allShapeInputData_;
@@ -289,6 +302,7 @@ struct InferenceContextImpl : public InferenceContext {
// mutable as internal cache of GraphInferencer instances
mutable std::unordered_map<std::string, std::unique_ptr<GraphInferencer>> graphAttributeInferencers_;
ShapeInferenceOptions options_;
+ NodeProto* node_;
};

struct DataPropagationContextImpl : public DataPropagationContext {
Loading

0 comments on commit a4d3a1c

Please sign in to comment.