-
Notifications
You must be signed in to change notification settings - Fork 3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Remove empty (DQ -> Q -> graph output) sequence in TransposeOptimizer (…
…#22172) ### Description Updates the TransposeOptimizer to also remove empty (DQ -> Q) sequences that occur at a graph output. An empty DQ->Q sequence results from a Transpose being optimized out. Consider the following example model: ![image](https://github.com/user-attachments/assets/4e7bc4eb-ea8a-463b-9672-c4ec5ef779b2) The TransposeOptimizer removes the final Transpose and leaves an empty DQ->Q->output_0 sequence. This PR ensures that the final DQ->Q is also removed. ### Motivation and Context Models with quantized output can run on QNN EP. The inference latency of a customer model is impacted by the unnecessary DQ->Q sequence at the output. --------- Co-authored-by: Scott McKay <[email protected]>
- Loading branch information
1 parent
ee6a915
commit a47254e
Showing
4 changed files
with
258 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
117 changes: 117 additions & 0 deletions
117
onnxruntime/test/testdata/make_transpose_optimizer_empty_dq_q_at_output_model.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
# Copyright (c) Microsoft Corporation. All rights reserved. | ||
# Licensed under the MIT License. | ||
|
||
import numpy as np | ||
import onnx | ||
|
||
|
||
def make_model(model_path: str): | ||
""" | ||
Creates a QDQ model with a (DQ -> Transpose -> Q -> GRAPH OUTPUT) sequence. The Transpose is optimized out | ||
and the TransposeOptimizer should also remove the empty (DQ -> Q) sequence. | ||
""" | ||
input0_shape = (1, 3, 4, 4) | ||
|
||
inputs = [onnx.helper.make_tensor_value_info("input0", onnx.TensorProto.FLOAT, input0_shape)] | ||
outputs = [onnx.helper.make_tensor_value_info("output0", onnx.TensorProto.UINT8, None)] | ||
|
||
mul_weight_scale_data = np.array(1.0, dtype=np.float32) | ||
mul_weight_zp_data = np.array(0, dtype=np.int8) | ||
|
||
initializers = [ | ||
onnx.numpy_helper.from_array(np.array(1.0, dtype=np.float32), "scale_1"), | ||
onnx.numpy_helper.from_array(np.array(128, dtype=np.uint8), "zp_128"), | ||
onnx.numpy_helper.from_array(np.array(1.0 / 255.0, dtype=np.float32), "scale_inv_255"), | ||
onnx.numpy_helper.from_array(np.array(0, dtype=np.uint8), "zp_0"), | ||
onnx.numpy_helper.from_array(mul_weight_scale_data, "mul_weight_scale"), | ||
onnx.numpy_helper.from_array(mul_weight_zp_data, "mul_weight_zp"), | ||
] | ||
nodes = [] | ||
|
||
# Transpose to channel-last | ||
tp0_node = onnx.helper.make_node("Transpose", ["input0"], ["tp0_out"], name="tp0_node", perm=(0, 2, 3, 1)) | ||
nodes.append(tp0_node) | ||
|
||
# Q_0 | ||
q0_node = onnx.helper.make_node("QuantizeLinear", ["tp0_out", "scale_1", "zp_128"], ["q0_out"], name="q0_node") | ||
nodes.append(q0_node) | ||
|
||
# DQ_0 | ||
dq0_node = onnx.helper.make_node("DequantizeLinear", ["q0_out", "scale_1", "zp_128"], ["dq0_out"], name="dq0_node") | ||
nodes.append(dq0_node) | ||
|
||
# Sigmoid | ||
sigmoid_node = onnx.helper.make_node("Sigmoid", ["dq0_out"], ["sigmoid_out"], name="sigmoid_node") | ||
nodes.append(sigmoid_node) | ||
|
||
# Q_1 | ||
q1_node = onnx.helper.make_node( | ||
"QuantizeLinear", ["sigmoid_out", "scale_inv_255", "zp_0"], ["q1_out"], name="q1_node" | ||
) | ||
nodes.append(q1_node) | ||
|
||
# DQ_1 | ||
dq1_node = onnx.helper.make_node( | ||
"DequantizeLinear", ["q1_out", "scale_inv_255", "zp_0"], ["dq1_out"], name="dq1_node" | ||
) | ||
nodes.append(dq1_node) | ||
|
||
# DQ for mul input[1] | ||
mul_weight_i8_data = np.array([1, 2, 3], dtype=np.int8) | ||
mul_weight = onnx.numpy_helper.from_array(mul_weight_i8_data, "mul_weight") | ||
initializers.append(mul_weight) | ||
|
||
nodes.append( | ||
onnx.helper.make_node( | ||
"DequantizeLinear", | ||
["mul_weight", "mul_weight_scale", "mul_weight_zp"], | ||
["mul_input_1"], | ||
name="dq_mul_input_1", | ||
) | ||
) | ||
|
||
# Mul | ||
mul_node = onnx.helper.make_node("Mul", ["dq1_out", "mul_input_1"], ["mul_out"], name="mul_node") | ||
nodes.append(mul_node) | ||
|
||
# Q_2 | ||
q2_node = onnx.helper.make_node("QuantizeLinear", ["mul_out", "scale_inv_255", "zp_0"], ["q2_out"], name="q2_node") | ||
nodes.append(q2_node) | ||
|
||
# DQ_2 | ||
dq2_node = onnx.helper.make_node( | ||
"DequantizeLinear", ["q2_out", "scale_inv_255", "zp_0"], ["dq2_out"], name="dq2_node" | ||
) | ||
nodes.append(dq2_node) | ||
|
||
# Transpose to channel-first | ||
tp1_node = onnx.helper.make_node("Transpose", ["dq2_out"], ["tp1_out"], name="tp1_node", perm=(0, 3, 1, 2)) | ||
nodes.append(tp1_node) | ||
|
||
# Q_3 to graph output | ||
nodes.append( | ||
onnx.helper.make_node("QuantizeLinear", ["tp1_out", "scale_inv_255", "zp_0"], ["output0"], name="q3_node") | ||
) | ||
|
||
graph = onnx.helper.make_graph( | ||
nodes, | ||
"transpose_opt_empty_dqq_graph_output", | ||
inputs, | ||
outputs, | ||
initializer=initializers, | ||
) | ||
opset_imports = [ | ||
onnx.helper.make_opsetid("", 19), | ||
] | ||
qdq_model = onnx.helper.make_model(graph, opset_imports=opset_imports) | ||
|
||
print("[INFO]: Running onnx.checker on qdq model") | ||
qdq_model = onnx.shape_inference.infer_shapes(qdq_model) | ||
onnx.checker.check_model(qdq_model, True) | ||
|
||
print(f"[INFO]: Saving {model_path}") | ||
onnx.save_model(qdq_model, model_path) | ||
|
||
|
||
if __name__ == "__main__": | ||
make_model("transpose_optimizer_empty_dq_q_at_graph_output.onnx") |
Binary file added
BIN
+1.38 KB
onnxruntime/test/testdata/transpose_optimizer_empty_dq_q_at_graph_output.onnx
Binary file not shown.