Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[tests][dask] fix workers without data test (fixes #5537) #5544

Merged
merged 3 commits into from
Nov 21, 2022
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 36 additions & 30 deletions tests/python_package_test/test_dask.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
from urllib.parse import urlparse

import pytest
from sklearn.metrics import accuracy_score, r2_score

import lightgbm as lgb

Expand Down Expand Up @@ -75,6 +76,13 @@ def cluster2():
dask_cluster.close()


@pytest.fixture(scope='module')
def cluster_three_workers():
dask_cluster = LocalCluster(n_workers=3, threads_per_worker=1, dashboard_address=None)
yield dask_cluster
dask_cluster.close()


@pytest.fixture()
def listen_port():
listen_port.port += 10
Expand Down Expand Up @@ -1503,56 +1511,54 @@ def f(part):

@pytest.mark.parametrize('task', tasks)
@pytest.mark.parametrize('output', data_output)
def test_training_succeeds_even_if_some_workers_do_not_have_any_data(task, output, cluster):
pytest.skip("skipping due to timeout issues discussed in https://github.com/microsoft/LightGBM/pull/5510")
def test_training_succeeds_even_if_some_workers_do_not_have_any_data(task, output, cluster_three_workers):
if task == 'ranking' and output == 'scipy_csr_matrix':
pytest.skip('LGBMRanker is not currently tested on sparse matrices')

with Client(cluster) as client:
def collection_to_single_partition(collection):
"""Merge the parts of a Dask collection into a single partition."""
if collection is None:
return
if isinstance(collection, da.Array):
return collection.rechunk(*collection.shape)
return collection.repartition(npartitions=1)

X, y, w, g, dX, dy, dw, dg = _create_data(
with Client(cluster_three_workers) as client:
_, y, _, _, dX, dy, dw, dg = _create_data(
objective=task,
output=output,
group=None
group=None,
n_samples=1_000,
chunk_size=200,
)

dask_model_factory = task_to_dask_factory[task]
local_model_factory = task_to_local_factory[task]

dX = collection_to_single_partition(dX)
dy = collection_to_single_partition(dy)
dw = collection_to_single_partition(dw)
dg = collection_to_single_partition(dg)
workers = list(client.scheduler_info()['workers'].keys())
assert len(workers) == 3
first_two_workers = workers[:2]

n_workers = len(client.scheduler_info()['workers'])
assert n_workers > 1
assert dX.npartitions == 1
dX = client.persist(dX, workers=first_two_workers)
dy = client.persist(dy, workers=first_two_workers)
dw = client.persist(dw, workers=first_two_workers)
wait([dX, dy, dw])

workers_with_data = set()
for coll in (dX, dy, dw):
for with_data in client.who_has(coll).values():
workers_with_data.update(with_data)
assert workers[2] not in with_data
assert len(workers_with_data) == 2

params = {
'time_out': 5,
'random_state': 42,
'num_leaves': 10
'num_leaves': 10,
'n_estimators': 20,
}

dask_model = dask_model_factory(tree='data', client=client, **params)
dask_model.fit(dX, dy, group=dg, sample_weight=dw)
dask_preds = dask_model.predict(dX).compute()

local_model = local_model_factory(**params)
if task == 'ranking':
local_model.fit(X, y, group=g, sample_weight=w)
if task == 'regression':
score = r2_score(y, dask_preds)
elif task.endswith('classification'):
score = accuracy_score(y, dask_preds)
else:
local_model.fit(X, y, sample_weight=w)
local_preds = local_model.predict(X)

assert assert_eq(dask_preds, local_preds)
score = spearmanr(dask_preds, y).correlation
assert score > 0.9


@pytest.mark.parametrize('task', tasks)
Expand Down