Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

support dynamic sequence length #424

Merged
merged 21 commits into from
Sep 22, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion csrc/includes/context.h
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
for (size_t j = blockIdx.y * blockDim.y + threadIdx.y; j < (m); j += blockDim.y * gridDim.y)

#define DS_CUDA_NUM_THREADS 512
#define DS_MAXIMUM_NUM_BLOCKS 4096
#define DS_MAXIMUM_NUM_BLOCKS 262144

inline int DS_GET_BLOCKS(const int N)
{
Expand Down
23 changes: 5 additions & 18 deletions csrc/includes/custom_cuda_layers.h
Original file line number Diff line number Diff line change
Expand Up @@ -29,15 +29,13 @@ void launch_bias_gelu(const T* input,
T* output,
int intermediate_size,
int batch_size,
int sequence_length,
cudaStream_t stream);

template <typename T>
void launch_gelu(const T* input,
T* output,
int intermediate_size,
int batch_size,
int sequence_length,
cudaStream_t stream);

template <typename T>
Expand All @@ -46,7 +44,6 @@ void launch_d_gelu(T* d_output,
const T* bias,
int intermediate_size,
int batch_size,
int sequence_length,
cudaStream_t stream);

// Custom fused bias add with layer normalization
Expand All @@ -57,14 +54,12 @@ void launch_bias_residual_layer_norm(T* vals,
const T* beta,
float epsilon,
int batch_size,
int sequence_length,
int hidden_dim,
cudaStream_t stream,
bool preLayerNorm,
bool training = false,
T* vars = nullptr,
T* means = nullptr,
T* vals_hat = nullptr);
bool training,
T* vars,
T* means);

template <typename T>
void launch_bias_residual_layer_norm(T* vals,
Expand All @@ -73,14 +68,11 @@ void launch_bias_residual_layer_norm(T* vals,
const T* beta,
float epsilon,
int batch_size,
int sequence_length,
int hidden_dim,
cudaStream_t stream,
bool preLayerNorm,
bool training = false,
T* vars = nullptr,
T* vals_hat = nullptr,
bool save_vals = false);
bool training,
T* vars);

template <typename T>
void launch_layerNorm_backward_fused_add(const T* out_grad1,
Expand All @@ -93,7 +85,6 @@ void launch_layerNorm_backward_fused_add(const T* out_grad1,
T* betta_grad,
T* inp_grad,
int batch_size,
int sequence_length,
int hidden_dim,
cudaStream_t stream[2]);
template <typename T>
Expand All @@ -106,7 +97,6 @@ void launch_layerNorm_backward_fused_add(const T* out_grad1,
T* betta_grad,
T* inp_grad,
int batch_size,
int sequence_length,
int hidden_dim,
cudaStream_t stream[2],
bool invertible = false,
Expand All @@ -122,7 +112,6 @@ void launch_layerNorm_backward(const T* out_grad,
T* betta_grad,
T* inp_grad,
int batch_size,
int sequence_length,
int hidden_dim,
cudaStream_t stream[2]);

Expand All @@ -135,7 +124,6 @@ void launch_layerNorm_backward(const T* out_grad,
T* betta_grad,
T* inp_grad,
int batch_size,
int sequence_length,
int hidden_dim,
cudaStream_t stream[2],
bool invertible = false,
Expand All @@ -153,7 +141,6 @@ void launch_layerNorm_backward_nreversible(const T* out_grad,
T* betta_grad,
T* inp_grad,
int batch_size,
int sequence_length,
int hidden_dim,
cudaStream_t stream[2]);

Expand Down
10 changes: 5 additions & 5 deletions csrc/includes/dropout.h
Original file line number Diff line number Diff line change
Expand Up @@ -9,15 +9,13 @@ class Dropout {
public:
struct Config {
float ratio;
uint32_t batch, dim;
uint32_t dim;
bool training;

Config(float r, uint32_t batch, uint32_t dim)
: ratio(r), batch(batch), dim(dim), training(true)
{
}
Config(float r, uint32_t d) : ratio(r), dim(d), training(true) {}

float RATIO() const { return training ? ratio : 0.0; }
inline void SetDim(uint32_t d) { dim = d; }
};

Dropout(const Config& config) : _config(config), _mask(nullptr) {}
Expand Down Expand Up @@ -70,6 +68,8 @@ class Dropout {

Config GetConfig() const { return _config; }

inline void SetDimension(uint32_t dim) { _config.SetDim(dim); }

private:
uint8_t* _mask;
Config _config;
Expand Down
12 changes: 9 additions & 3 deletions csrc/includes/ds_transformer_cuda.h
100755 → 100644
Original file line number Diff line number Diff line change
Expand Up @@ -121,11 +121,17 @@ class BertTransformerLayer {

void SetIntermediateBuffers(uint8_t* attn_prob_dropout_mask_ptr,
uint8_t* attn_output_dropout_mask_ptr,
uint8_t* layer_output_dropout_mask_ptr);
uint8_t* layer_output_dropout_mask_ptr,
T* layer_norm_var,
T* layer_norm_mean,
T* attn_layer_norm_var,
T* attn_layer_norm_mean);

inline int GetBatchSize() const { return _batch_size; }
inline int GetNumHeads() const { return _heads; }
inline int GetSeqLength() const { return _seq_length; }

void SetSeqLength(int seq_len, int bsz);
inline int GetHiddenSize() const { return _hidden_size; }
void SetTrainingMode(bool training);

Expand All @@ -150,8 +156,8 @@ class BertTransformerLayer {
// layers
FeedForward<T> _qkv_linear;
FeedForward<T> _attn_out_linear;
Normalize_Layer<T> _norm_layer2;
Normalize_Layer<T> _norm_layer3;
Normalize_Layer<T> _attn_layer_norm;
Normalize_Layer<T> _layer_norm;
Normalize_Layer<T>* _last_normalize;
FeedForward<T> _ff1, _ff2;
Softmax<T> _softmax;
Expand Down
13 changes: 3 additions & 10 deletions csrc/includes/gelu.h
Original file line number Diff line number Diff line change
Expand Up @@ -9,13 +9,8 @@ template <typename T>
class Gelu {
public:
struct Config {
uint32_t batch_size;
uint32_t seq_length;
uint32_t intermediate_size;
Config(uint32_t batch, uint32_t seq, uint32_t inter_size)
: batch_size(batch), seq_length(seq), intermediate_size(inter_size)
{
}
Config(uint32_t inter_size) : intermediate_size(inter_size) {}
};

Gelu(const Config& config) : _config(config) {}
Expand All @@ -28,14 +23,12 @@ class Gelu {
T* output,
cudaStream_t stream)
{
launch_bias_gelu<T>(
input_buf, bias, output, _config.intermediate_size, bsz, _config.seq_length, stream);
launch_bias_gelu<T>(input_buf, bias, output, _config.intermediate_size, bsz, stream);
}

void Backward(int bsz, T* d_output, const T* input_buf, const T* bias, cudaStream_t stream)
{
launch_d_gelu<T>(
d_output, input_buf, bias, _config.intermediate_size, bsz, _config.seq_length, stream);
launch_d_gelu<T>(d_output, input_buf, bias, _config.intermediate_size, bsz, stream);
}

private:
Expand Down
Loading