Skip to content

Commit

Permalink
Revert "Remove redundant uplo argument in chol family. When using Her…
Browse files Browse the repository at this point in the history
…mitian (JuliaLang#17909)"

This reverts commit d992f3d.
  • Loading branch information
andreasnoack authored and mfasi committed Sep 5, 2016
1 parent acfed7c commit efa8c17
Show file tree
Hide file tree
Showing 4 changed files with 56 additions and 66 deletions.
3 changes: 0 additions & 3 deletions base/deprecated.jl
Original file line number Diff line number Diff line change
Expand Up @@ -775,9 +775,6 @@ function transpose(x)
return x
end

@deprecate cholfact!(A::Base.LinAlg.HermOrSym, uplo::Symbol, ::Type{Val{false}}) cholfact!(A, Val{false})
@deprecate cholfact!(A::Base.LinAlg.HermOrSym, uplo::Symbol = :U) cholfact!(A)

# During the 0.5 development cycle, do not add any deprecations below this line
# To be deprecated in 0.6

Expand Down
97 changes: 45 additions & 52 deletions base/linalg/cholesky.jl
Original file line number Diff line number Diff line change
Expand Up @@ -121,10 +121,8 @@ non_hermitian_error(f) = throw(ArgumentError("matrix is not symmetric/" *

# chol!. Destructive methods for computing Cholesky factor of real symmetric or Hermitian
# matrix
chol!(A::Hermitian) =
_chol!(A.uplo == 'U' ? A.data : LinAlg.copytri!(A.data, 'L', true), UpperTriangular)
chol!{T<:Real,S<:StridedMatrix}(A::Symmetric{T,S}) =
_chol!(A.uplo == 'U' ? A.data : LinAlg.copytri!(A.data, 'L', true), UpperTriangular)
chol!(A::Hermitian) = _chol!(A.data, UpperTriangular)
chol!{T<:Real,S<:StridedMatrix}(A::Symmetric{T,S}) = _chol!(A.data, UpperTriangular)
function chol!(A::StridedMatrix)
ishermitian(A) || non_hermitian_error("chol!")
return _chol!(A, UpperTriangular)
Expand All @@ -137,22 +135,14 @@ end
function chol(A::Hermitian)
T = promote_type(typeof(chol(one(eltype(A)))), Float32)
AA = similar(A, T, size(A))
if A.uplo == 'U'
copy!(AA, A.data)
else
Base.ccopy!(AA, A.data)
end
chol!(Hermitian(AA, :U))
copy!(AA, A.data)
chol!(Hermitian(AA))
end
function chol{T<:Real,S<:AbstractMatrix}(A::Symmetric{T,S})
TT = promote_type(typeof(chol(one(T))), Float32)
AA = similar(A, TT, size(A))
if A.uplo == 'U'
copy!(AA, A.data)
else
Base.ccopy!(AA, A.data)
end
chol!(Hermitian(AA, :U))
copy!(AA, A.data)
chol!(Hermitian(AA))
end

## for StridedMatrices, check that matrix is symmetric/Hermitian
Expand Down Expand Up @@ -180,15 +170,15 @@ chol(x::Number, args...) = _chol!(x, nothing)
# cholfact!. Destructive methods for computing Cholesky factorization of real symmetric
# or Hermitian matrix
## No pivoting
function cholfact!(A::Hermitian, ::Type{Val{false}})
if A.uplo == :U
function cholfact!(A::Hermitian, uplo::Symbol, ::Type{Val{false}})
if uplo == :U
Cholesky(_chol!(A.data, UpperTriangular).data, 'U')
else
Cholesky(_chol!(A.data, LowerTriangular).data, 'L')
end
end
function cholfact!{T<:Real,S}(A::Symmetric{T,S}, ::Type{Val{false}})
if A.uplo == :U
function cholfact!{T<:Real,S}(A::Symmetric{T,S}, uplo::Symbol, ::Type{Val{false}})
if uplo == :U
Cholesky(_chol!(A.data, UpperTriangular).data, 'U')
else
Cholesky(_chol!(A.data, LowerTriangular).data, 'L')
Expand All @@ -197,7 +187,7 @@ end

### for StridedMatrices, check that matrix is symmetric/Hermitian
"""
cholfact!(A, [uplo::Symbol,] Val{false}) -> Cholesky
cholfact!(A, uplo::Symbol, Val{false}) -> Cholesky
The same as `cholfact`, but saves space by overwriting the input `A`, instead
of creating a copy. An `InexactError` exception is thrown if the factorisation
Expand All @@ -206,36 +196,37 @@ integer types.
"""
function cholfact!(A::StridedMatrix, uplo::Symbol, ::Type{Val{false}})
ishermitian(A) || non_hermitian_error("cholfact!")
return cholfact!(Hermitian(A, uplo), Val{false})
return cholfact!(Hermitian(A), uplo, Val{false})
end

### Default to no pivoting (and storing of upper factor) when not explicit
cholfact!(A::Hermitian) = cholfact!(A, Val{false})
cholfact!{T<:Real,S}(A::Symmetric{T,S}) = cholfact!(A, Val{false})
cholfact!(A::Hermitian, uplo::Symbol = :U) = cholfact!(A, uplo, Val{false})
cholfact!{T<:Real,S}(A::Symmetric{T,S}, uplo::Symbol = :U) = cholfact!(A, uplo, Val{false})
#### for StridedMatrices, check that matrix is symmetric/Hermitian
function cholfact!(A::StridedMatrix, uplo::Symbol = :U)
ishermitian(A) || non_hermitian_error("cholfact!")
return cholfact!(Hermitian(A, uplo))
return cholfact!(Hermitian(A), uplo)
end


## With pivoting
### BLAS/LAPACK element types
function cholfact!{T<:BlasReal,S<:StridedMatrix}(A::RealHermSymComplexHerm{T,S},
::Type{Val{true}}; tol = 0.0)
AA, piv, rank, info = LAPACK.pstrf!(A.uplo, A.data, tol)
return CholeskyPivoted{eltype(AA),typeof(AA)}(AA, A.uplo, piv, rank, tol, info)
uplo::Symbol, ::Type{Val{true}}; tol = 0.0)
uplochar = char_uplo(uplo)
AA, piv, rank, info = LAPACK.pstrf!(uplochar, A.data, tol)
return CholeskyPivoted{eltype(AA),typeof(AA)}(AA, uplochar, piv, rank, tol, info)
end

### Non BLAS/LAPACK element types (generic). Since generic fallback for pivoted Cholesky
### is not implemented yet we throw an error
cholfact!{T<:Real,S}(A::RealHermSymComplexHerm{T,S}, ::Type{Val{true}};
cholfact!{T<:Real,S}(A::RealHermSymComplexHerm{T,S}, uplo::Symbol, ::Type{Val{true}};
tol = 0.0) =
throw(ArgumentError("generic pivoted Cholesky factorization is not implemented yet"))

### for StridedMatrices, check that matrix is symmetric/Hermitian
"""
cholfact!(A, [uplo::Symbol,] Val{true}; tol = 0.0) -> CholeskyPivoted
cholfact!(A, uplo::Symbol, Val{true}; tol = 0.0) -> CholeskyPivoted
The same as `cholfact`, but saves space by overwriting the input `A`, instead
of creating a copy. An `InexactError` exception is thrown if the
Expand All @@ -244,61 +235,63 @@ e.g. for integer types.
"""
function cholfact!(A::StridedMatrix, uplo::Symbol, ::Type{Val{true}}; tol = 0.0)
ishermitian(A) || non_hermitian_error("cholfact!")
return cholfact!(Hermitian(A, uplo), Val{true}; tol = tol)
return cholfact!(Hermitian(A), uplo, Val{true}; tol = tol)
end



# cholfact. Non-destructive methods for computing Cholesky factorization of real symmetric
# or Hermitian matrix
## No pivoting
cholfact(A::Hermitian, ::Type{Val{false}}) =
cholfact!(copy_oftype(A, promote_type(typeof(chol(one(eltype(A)))),Float32)), Val{false})
cholfact{T<:Real,S<:StridedMatrix}(A::Symmetric{T,S}, ::Type{Val{false}}) =
cholfact!(copy_oftype(A, promote_type(typeof(chol(one(eltype(A)))),Float32)), Val{false})
cholfact(A::Hermitian, uplo::Symbol, ::Type{Val{false}}) =
cholfact!(copy_oftype(A, promote_type(typeof(chol(one(eltype(A)))),Float32)), uplo, Val{false})
cholfact{T<:Real,S<:StridedMatrix}(A::Symmetric{T,S}, uplo::Symbol, ::Type{Val{false}}) =
cholfact!(copy_oftype(A, promote_type(typeof(chol(one(eltype(A)))),Float32)), uplo, Val{false})

### for StridedMatrices, check that matrix is symmetric/Hermitian
"""
cholfact(A, [uplo::Symbol,] Val{false}) -> Cholesky
cholfact(A, uplo::Symbol, Val{false}) -> Cholesky
Compute the Cholesky factorization of a dense symmetric positive definite matrix `A`
and return a `Cholesky` factorization. The matrix `A` can either be a `Symmetric` or `Hermitian`
`StridedMatrix` or a *perfectly* symmetric or Hermitian `StridedMatrix`. In the latter case,
the optional argument `uplo` may be `:L` for using the lower part or `:U` for the upper part of `A`.
and return a `Cholesky` factorization.
The `uplo` argument may be `:L` for using the lower part or `:U` for the upper part of `A`.
The default is to use `:U`.
The triangular Cholesky factor can be obtained from the factorization `F` with: `F[:L]` and `F[:U]`.
The following functions are available for `Cholesky` objects: `size`, `\\`, `inv`, `det`.
A `PosDefException` exception is thrown in case the matrix is not positive definite.
"""
function cholfact(A::StridedMatrix, uplo::Symbol, ::Type{Val{false}})
ishermitian(A) || non_hermitian_error("cholfact")
return cholfact(Hermitian(A, uplo), Val{false})
return cholfact(Hermitian(A), uplo, Val{false})
end

### Default to no pivoting (and storing of upper factor) when not explicit
cholfact(A::Hermitian) = cholfact(A, Val{false})
cholfact{T<:Real,S<:StridedMatrix}(A::Symmetric{T,S}) = cholfact(A, Val{false})
cholfact(A::Hermitian, uplo::Symbol = :U) = cholfact(A, uplo, Val{false})
cholfact{T<:Real,S<:StridedMatrix}(A::Symmetric{T,S}, uplo::Symbol = :U) =
cholfact(A, uplo, Val{false})
#### for StridedMatrices, check that matrix is symmetric/Hermitian
function cholfact(A::StridedMatrix, uplo::Symbol = :U)
ishermitian(A) || non_hermitian_error("cholfact")
return cholfact(Hermitian(A, uplo))
return cholfact(Hermitian(A), uplo)
end


## With pivoting
cholfact(A::Hermitian, ::Type{Val{true}}; tol = 0.0) =
cholfact(A::Hermitian, uplo::Symbol, ::Type{Val{true}}; tol = 0.0) =
cholfact!(copy_oftype(A, promote_type(typeof(chol(one(eltype(A)))),Float32)),
Val{true}; tol = tol)
cholfact{T<:Real,S<:StridedMatrix}(A::RealHermSymComplexHerm{T,S}, ::Type{Val{true}}; tol = 0.0) =
uplo, Val{true}; tol = tol)
cholfact{T<:Real,S<:StridedMatrix}(A::RealHermSymComplexHerm{T,S}, uplo::Symbol,
::Type{Val{true}}; tol = 0.0) =
cholfact!(copy_oftype(A, promote_type(typeof(chol(one(eltype(A)))),Float32)),
Val{true}; tol = tol)
uplo, Val{true}; tol = tol)

### for StridedMatrices, check that matrix is symmetric/Hermitian
"""
cholfact(A, [uplo::Symbol,] Val{true}; tol = 0.0) -> CholeskyPivoted
cholfact(A, uplo::Symbol, Val{true}; tol = 0.0) -> CholeskyPivoted
Compute the pivoted Cholesky factorization of a dense symmetric positive semi-definite matrix `A`
and return a `CholeskyPivoted` factorization. The matrix `A` can either be a `Symmetric` or `Hermitian`
`StridedMatrix` or a *perfectly* symmetric or Hermitian `StridedMatrix`. In the latter case,
the optional argument `uplo` may be `:L` for using the lower part or `:U` for the upper part of `A`.
and return a `CholeskyPivoted` factorization.
The `uplo` argument may be `:L` for using the lower part or `:U` for the upper part of `A`.
The default is to use `:U`.
The triangular Cholesky factor can be obtained from the factorization `F` with: `F[:L]` and `F[:U]`.
The following functions are available for `PivotedCholesky` objects: `size`, `\\`, `inv`, `det`, and `rank`.
Expand All @@ -307,7 +300,7 @@ For negative values, the tolerance is the machine precision.
"""
function cholfact(A::StridedMatrix, uplo::Symbol, ::Type{Val{true}}; tol = 0.0)
ishermitian(A) || non_hermitian_error("cholfact")
return cholfact(Hermitian(A, uplo), Val{true}; tol = tol)
return cholfact(Hermitian(A), uplo, Val{true}; tol = tol)
end

## Number
Expand Down
12 changes: 6 additions & 6 deletions doc/stdlib/linalg.rst
Original file line number Diff line number Diff line change
Expand Up @@ -308,17 +308,17 @@ Linear algebra functions in Julia are largely implemented by calling functions f
Compute the square root of a non-negative number ``x``\ .

.. function:: cholfact(A, [uplo::Symbol,] Val{false}) -> Cholesky
.. function:: cholfact(A, uplo::Symbol, Val{false}) -> Cholesky

.. Docstring generated from Julia source
Compute the Cholesky factorization of a dense symmetric positive definite matrix ``A`` and return a ``Cholesky`` factorization. The matrix ``A`` can either be a ``Symmetric`` or ``Hermitian`` ``StridedMatrix`` or a *perfectly* symmetric or Hermitian ``StridedMatrix``\ . In the latter case, the optional argument ``uplo`` may be ``:L`` for using the lower part or ``:U`` for the upper part of ``A``\ . The default is to use ``:U``\ . The triangular Cholesky factor can be obtained from the factorization ``F`` with: ``F[:L]`` and ``F[:U]``\ . The following functions are available for ``Cholesky`` objects: ``size``\ , ``\``\ , ``inv``\ , ``det``\ . A ``PosDefException`` exception is thrown in case the matrix is not positive definite.
Compute the Cholesky factorization of a dense symmetric positive definite matrix ``A`` and return a ``Cholesky`` factorization. The ``uplo`` argument may be ``:L`` for using the lower part or ``:U`` for the upper part of ``A``\ . The default is to use ``:U``\ . The triangular Cholesky factor can be obtained from the factorization ``F`` with: ``F[:L]`` and ``F[:U]``\ . The following functions are available for ``Cholesky`` objects: ``size``\ , ``\``\ , ``inv``\ , ``det``\ . A ``PosDefException`` exception is thrown in case the matrix is not positive definite.

.. function:: cholfact(A, [uplo::Symbol,] Val{true}; tol = 0.0) -> CholeskyPivoted
.. function:: cholfact(A, uplo::Symbol, Val{true}; tol = 0.0) -> CholeskyPivoted

.. Docstring generated from Julia source
Compute the pivoted Cholesky factorization of a dense symmetric positive semi-definite matrix ``A`` and return a ``CholeskyPivoted`` factorization. The matrix ``A`` can either be a ``Symmetric`` or ``Hermitian`` ``StridedMatrix`` or a *perfectly* symmetric or Hermitian ``StridedMatrix``\ . In the latter case, the optional argument ``uplo`` may be ``:L`` for using the lower part or ``:U`` for the upper part of ``A``\ . The default is to use ``:U``\ . The triangular Cholesky factor can be obtained from the factorization ``F`` with: ``F[:L]`` and ``F[:U]``\ . The following functions are available for ``PivotedCholesky`` objects: ``size``\ , ``\``\ , ``inv``\ , ``det``\ , and ``rank``\ . The argument ``tol`` determines the tolerance for determining the rank. For negative values, the tolerance is the machine precision.
Compute the pivoted Cholesky factorization of a dense symmetric positive semi-definite matrix ``A`` and return a ``CholeskyPivoted`` factorization. The ``uplo`` argument may be ``:L`` for using the lower part or ``:U`` for the upper part of ``A``\ . The default is to use ``:U``\ . The triangular Cholesky factor can be obtained from the factorization ``F`` with: ``F[:L]`` and ``F[:U]``\ . The following functions are available for ``PivotedCholesky`` objects: ``size``\ , ``\``\ , ``inv``\ , ``det``\ , and ``rank``\ . The argument ``tol`` determines the tolerance for determining the rank. For negative values, the tolerance is the machine precision.

.. function:: cholfact(A; shift = 0.0, perm = Int[]) -> CHOLMOD.Factor

Expand All @@ -344,13 +344,13 @@ Linear algebra functions in Julia are largely implemented by calling functions f
This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or complex doubles. Input matrices not of those element types will be converted to ``SparseMatrixCSC{Float64}`` or ``SparseMatrixCSC{Complex128}`` as appropriate.


.. function:: cholfact!(A, [uplo::Symbol,] Val{false}) -> Cholesky
.. function:: cholfact!(A, uplo::Symbol, Val{false}) -> Cholesky

.. Docstring generated from Julia source
The same as ``cholfact``\ , but saves space by overwriting the input ``A``\ , instead of creating a copy. An ``InexactError`` exception is thrown if the factorisation produces a number not representable by the element type of ``A``\ , e.g. for integer types.

.. function:: cholfact!(A, [uplo::Symbol,] Val{true}; tol = 0.0) -> CholeskyPivoted
.. function:: cholfact!(A, uplo::Symbol, Val{true}; tol = 0.0) -> CholeskyPivoted

.. Docstring generated from Julia source
Expand Down
10 changes: 5 additions & 5 deletions test/linalg/cholesky.jl
Original file line number Diff line number Diff line change
Expand Up @@ -74,15 +74,15 @@ for eltya in (Float32, Float64, Complex64, Complex128, BigFloat, Int)
@test full(lapd) apd
l = lapd[:L]
@test l*l' apd
@test capd[:U] lapd[:U]
@test lapd[:L] capd[:L]
@test triu(capd.factors) lapd[:U]
@test tril(lapd.factors) capd[:L]
if eltya <: Real
capds = cholfact(apds)
lapds = cholfact(full(apds), :L)
lapds = cholfact(apds, :L)
ls = lapds[:L]
@test ls*ls' apd
@test capds[:U] lapds[:U]
@test lapds[:L] capds[:L]
@test triu(capds.factors) lapds[:U]
@test tril(lapds.factors) capds[:L]
end

#pivoted upper Cholesky
Expand Down

0 comments on commit efa8c17

Please sign in to comment.