-
Notifications
You must be signed in to change notification settings - Fork 4
/
batenet.py
819 lines (685 loc) · 34.7 KB
/
batenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
import torch
import torch.nn as nn
from torch.hub import load_state_dict_from_url
import torch.nn.functional as F
from torch.nn.init import normal_, constant_
from ops.utils import count_conv2d_flops
__all__ = ['BateNet', 'batenet18', 'batenet34', 'batenet50', 'batenet101', 'batenet152']
model_urls = {
'batenet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'batenet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'batenet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'batenet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'batenet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth'
}
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
def list_sum(obj):
if isinstance(obj, list):
if len(obj)==0:
return 0
else:
return sum(list_sum(x) for x in obj)
else:
return obj
def shift(x, n_segment, fold_div=3, inplace=False):
nt, c, h, w = x.size()
n_batch = nt // n_segment
x = x.view(n_batch, n_segment, c, h, w)
fold = c // fold_div
if inplace:
# Due to some out of order error when performing parallel computing.
# May need to write a CUDA kernel.
raise NotImplementedError
# out = InplaceShift.apply(x, fold)
else:
out = torch.zeros_like(x)
out[:, :-1, :fold] = x[:, 1:, :fold] # shift left
out[:, 1:, fold: 2 * fold] = x[:, :-1, fold: 2 * fold] # shift right
out[:, :, 2 * fold:] = x[:, :, 2 * fold:] # not shift
return out.view(nt, c, h, w)
class PolicyBlock(nn.Module):
def __init__(self, in_planes, out_planes, norm_layer, shared, args):
super(PolicyBlock, self).__init__()
self.args = args
self.norm_layer = norm_layer
self.shared = shared
in_factor = 1
out_factor = 2
if self.args.gate_history:
in_factor = 2
if not self.args.gate_no_skipping:
out_factor = 3
self.action_dim = out_factor
in_dim = in_planes * in_factor
out_dim = out_planes * out_factor // self.args.granularity
out_dim = out_dim * (args.gate_channel_ends - args.gate_channel_starts) // 64
self.num_channels = out_dim // self.action_dim
keyword = "%d_%d" % (in_dim, out_dim)
if self.args.relative_hidden_size > 0:
hidden_dim = int(self.args.relative_hidden_size * out_planes // self.args.granularity)
elif self.args.hidden_quota > 0:
hidden_dim = self.args.hidden_quota // (out_planes // self.args.granularity)
else:
hidden_dim = self.args.gate_hidden_dim
if self.args.gate_conv_embed_type != "None":
if self.args.gate_conv_embed_type == "conv3x3":
self.gate_conv_embed = conv3x3(in_planes, in_planes, stride=1, groups=1, dilation=1)
elif self.args.gate_conv_embed_type == "conv3x3dw":
self.gate_conv_embed = conv3x3(in_planes, in_planes, stride=1, groups=in_planes, dilation=1)
elif self.args.gate_conv_embed_type == "conv1x1":
self.gate_conv_embed = conv1x1(in_planes, in_planes, stride=1, groups=1, dilation=1)
elif self.args.gate_conv_embed_type == "conv1x1dw":
self.gate_conv_embed = conv1x1(in_planes, in_planes, stride=1, groups=in_planes, dilation=1)
self.gate_conv_embed_bn = nn.BatchNorm2d(in_planes)
self.gate_conv_embed_relu = nn.ReLU(inplace=True)
if self.args.single_linear:
self.gate_fc0 = nn.Linear(in_dim, out_dim)
if self.args.gate_bn_between_fcs:
self.gate_bn = nn.BatchNorm1d(out_dim)
if self.args.gate_relu_between_fcs:
self.gate_relu = nn.ReLU(inplace=True)
normal_(self.gate_fc0.weight, 0, 0.001)
constant_(self.gate_fc0.bias, 0)
elif self.args.triple_linear:
self.gate_fc0 = nn.Linear(in_planes * in_factor, hidden_dim)
if self.args.gate_bn_between_fcs:
self.gate_bn = nn.BatchNorm1d(hidden_dim)
if self.args.gate_relu_between_fcs:
self.gate_relu = nn.ReLU(inplace=True)
self.gate_fc1 = nn.Linear(hidden_dim, hidden_dim)
if self.args.gate_bn_between_fcs:
self.gate_bn1 = nn.BatchNorm1d(hidden_dim)
if self.args.gate_relu_between_fcs:
self.gate_relu1 = nn.ReLU(inplace=True)
self.gate_fc2 = nn.Linear(hidden_dim, out_dim)
normal_(self.gate_fc0.weight, 0, 0.001)
constant_(self.gate_fc0.bias, 0)
normal_(self.gate_fc1.weight, 0, 0.001)
constant_(self.gate_fc1.bias, 0)
normal_(self.gate_fc2.weight, 0, 0.001)
constant_(self.gate_fc2.bias, 0)
else:
if self.args.shared_policy_net:
self.gate_fc0 = self.shared[0][keyword]
else:
self.gate_fc0 = nn.Linear(in_dim, hidden_dim)
if self.args.gate_bn_between_fcs:
self.gate_bn = nn.BatchNorm1d(hidden_dim)
if self.args.gate_relu_between_fcs:
self.gate_relu = nn.ReLU(inplace=True)
if self.args.shared_policy_net:
self.gate_fc1 = self.shared[1][keyword]
else:
self.gate_fc1 = nn.Linear(hidden_dim, out_dim)
if not self.args.shared_policy_net:
normal_(self.gate_fc0.weight, 0, 0.001)
constant_(self.gate_fc0.bias, 0)
normal_(self.gate_fc1.weight, 0, 0.001)
constant_(self.gate_fc1.bias, 0)
def forward(self, x, **kwargs):
# data preparation
if self.args.gate_conv_embed_type != "None":
x_input = self.gate_conv_embed(x)
x_input = self.gate_conv_embed_bn(x_input)
x_input = self.gate_conv_embed_relu(x_input)
else:
x_input = x
if self.args.gate_reduce_type=="avg":
x_c = nn.AdaptiveAvgPool2d((1, 1))(x_input)
elif self.args.gate_reduce_type=="max":
x_c = nn.AdaptiveMaxPool2d((1, 1))(x_input)
x_c = torch.flatten(x_c, 1)
_nt, _c = x_c.shape
_t = self.args.num_segments
_n = _nt // _t
# history
if self.args.gate_history:
x_c_reshape = x_c.view(_n, _t, _c)
h_vec = torch.zeros_like(x_c_reshape)
h_vec[:, 1:] = x_c_reshape[:, :-1]
h_vec = h_vec.view(_nt, _c)
x_c = torch.cat([h_vec, x_c], dim=-1)
# fully-connected embedding
if self.args.single_linear:
x_c = self.gate_fc0(x_c)
if self.args.gate_bn_between_fcs:
x_c = x_c.unsqueeze(-1)
x_c = self.gate_bn(x_c)
x_c = x_c.squeeze(-1)
if self.args.gate_relu_between_fcs:
x_c = self.gate_relu(x_c)
elif self.args.triple_linear:
x_c = self.gate_fc0(x_c)
if self.args.gate_bn_between_fcs:
x_c = x_c.unsqueeze(-1)
x_c = self.gate_bn(x_c)
x_c = x_c.squeeze(-1)
if self.args.gate_relu_between_fcs:
x_c = self.gate_relu(x_c)
x_c = self.gate_fc1(x_c)
if self.args.gate_bn_between_fcs:
x_c = x_c.unsqueeze(-1)
x_c = self.gate_bn1(x_c)
x_c = x_c.squeeze(-1)
if self.args.gate_relu_between_fcs:
x_c = self.gate_relu1(x_c)
x_c = self.gate_fc2(x_c)
else:
x_c = self.gate_fc0(x_c)
if self.args.gate_bn_between_fcs:
x_c = x_c.unsqueeze(-1)
x_c = self.gate_bn(x_c)
x_c = x_c.squeeze(-1)
if self.args.gate_relu_between_fcs:
x_c = self.gate_relu(x_c)
x_c = self.gate_fc1(x_c)
# gating operations
x_c2d = x_c.view(x.shape[0], self.num_channels // self.args.granularity, self.action_dim)
x_c2d = torch.log(F.softmax(x_c2d, dim=2).clamp(min=1e-8))
mask = F.gumbel_softmax(logits=x_c2d, tau=kwargs["tau"], hard=not self.args.gate_gumbel_use_soft)
if self.args.granularity>1:
mask = mask.repeat(1, self.args.granularity, 1)
if self.args.gate_channel_starts>0 or self.args.gate_channel_ends<64:
full_channels = mask.shape[1] // (self.args.gate_channel_ends-self.args.gate_channel_starts) * 64
channel_starts = full_channels // 64 * self.args.gate_channel_starts
channel_ends = full_channels // 64 * self.args.gate_channel_ends
outer_mask = torch.zeros(mask.shape[0], full_channels, mask.shape[2]).to(mask.device)
outer_mask[:, :, -1] = 1.
outer_mask[:, channel_starts:channel_ends] = mask
return outer_mask
else:
return mask # TODO: BT*C*ACT_DIM
def handcraft_policy_for_masks(x, out, num_channels, use_current, args):
factor = 3 if args.gate_history else 2
if use_current:
mask = torch.zeros(x.shape[0], num_channels, factor, device=x.device)
mask[:, :, -1] = 1.
elif args.gate_all_zero_policy:
mask = torch.zeros(x.shape[0], num_channels, factor, device=x.device)
elif args.gate_all_one_policy:
mask = torch.ones(x.shape[0], num_channels, factor, device=x.device)
elif args.gate_only_current_policy:
mask = torch.zeros(x.shape[0], num_channels, factor, device=x.device)
mask[:, :, -1] = 1.
elif args.gate_random_soft_policy:
mask = torch.rand(x.shape[0], num_channels, factor, device=x.device)
elif args.gate_random_hard_policy:
tmp_value = torch.rand(x.shape[0], num_channels, device=x.device)
mask = torch.zeros(x.shape[0], num_channels, factor, device=x.device)
if len(args.gate_stoc_ratio) > 0:
_ratio = args.gate_stoc_ratio
else:
_ratio = [0.333, 0.333, 0.334] if args.gate_history else [0.5, 0.5]
mask[:, :, 0][torch.where(tmp_value < _ratio[0])] = 1
if args.gate_history:
mask[:, :, 1][torch.where((tmp_value < _ratio[1] + _ratio[0]) & (tmp_value > _ratio[0]))] = 1
mask[:, :, 2][torch.where(tmp_value > _ratio[1] + _ratio[0])] = 1
elif args.gate_threshold:
stat = torch.norm(out, dim=[2, 3], p=1) / out.shape[2] / out.shape[3]
mask = torch.ones_like(stat).float()
if args.absolute_threshold is not None:
mask[torch.where(stat < args.absolute_threshold)] = 0
else:
if args.relative_max_threshold is not None:
mask[torch.where(
stat < torch.max(stat, dim=1)[0].unsqueeze(-1) * args.relative_max_threshold)] = 0
else:
mask = torch.zeros_like(stat)
c_ids = torch.topk(stat, k=int(mask.shape[1] * args.relative_keep_threshold), dim=1)[1] # TODO B*K
b_ids = torch.tensor([iii for iii in range(mask.shape[0])]).to(mask.device).unsqueeze(-1).expand(c_ids.shape) # TODO B*K
mask[b_ids.detach().flatten(), c_ids.detach().flatten()] = 1
mask = torch.stack([1 - mask, mask], dim=-1)
return mask
def get_hmap(out, args, **kwargs):
out_reshaped = out.view((-1, args.num_segments) + out.shape[1:])
if args.gate_history:
h_map_reshaped = torch.zeros_like(out_reshaped)
h_map_reshaped[:, 1:] = out_reshaped[:, :-1]
else:
return None
if args.gate_history_detach:
h_map_reshaped = h_map_reshaped.detach()
h_map_updated = h_map_reshaped.view((-1,) + out_reshaped.shape[2:])
return h_map_updated
def fuse_out_with_mask(out, mask, h_map, args):
out = out * mask[:, :, -1].unsqueeze(-1).unsqueeze(-1)
if args.gate_history:
out = out + h_map * mask[:, :, -2].unsqueeze(-1).unsqueeze(-1)
return out
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample0=None, downsample1=None, groups=1,
base_width=64, dilation=1, norm_layer=None, shared=None, shall_enable=None, args=None):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample0 = downsample0
self.downsample1 = downsample1
self.stride = stride
self.args = args
self.shall_enable = shall_enable
self.num_channels = planes
self.adaptive_policy = not any([self.args.gate_all_zero_policy,
self.args.gate_all_one_policy,
self.args.gate_only_current_policy,
self.args.gate_random_soft_policy,
self.args.gate_random_hard_policy,
self.args.gate_threshold])
if self.shall_enable==False and self.adaptive_policy:
self.adaptive_policy=False
self.use_current=True
else:
self.use_current=False
if self.adaptive_policy:
self.policy_net = PolicyBlock(in_planes=inplanes, out_planes=planes, norm_layer=norm_layer, shared=shared, args=args)
if self.args.dense_in_block:
self.policy_net2 = PolicyBlock(in_planes=planes, out_planes=planes, norm_layer=norm_layer, shared=shared, args=args)
if self.args.gate_history_conv_type in ['ghost', 'ghostbnrelu']:
self.gate_hist_conv = conv3x3(planes, planes, groups=planes)
if self.args.gate_history_conv_type == 'ghostbnrelu':
self.gate_hist_bnrelu = nn.Sequential(norm_layer(planes), nn.ReLU(inplace=True))
def count_flops(self, input_data_shape, **kwargs):
conv1_flops, conv1_out_shape = count_conv2d_flops(input_data_shape, self.conv1)
conv2_flops, conv2_out_shape = count_conv2d_flops(conv1_out_shape, self.conv2)
if self.downsample0 is not None:
downsample0_flops, _ = count_conv2d_flops(input_data_shape, self.downsample0)
else:
downsample0_flops = 0
return [conv1_flops, conv2_flops, downsample0_flops, 0], conv2_out_shape
def forward(self, x, **kwargs):
identity = x
# shift operations
if self.args.shift:
x = shift(x, self.args.num_segments, fold_div=self.args.shift_div, inplace=False)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
# gate functions
h_map_updated = get_hmap(out, self.args, **kwargs)
if self.adaptive_policy:
mask = self.policy_net(x, **kwargs)
else:
mask = handcraft_policy_for_masks(x, out, self.num_channels, self.use_current, self.args)
out = fuse_out_with_mask(out, mask, h_map_updated, self.args)
x2 = out
out = self.conv2(out)
out = self.bn2(out)
# gate functions
if self.args.dense_in_block:
h_map_updated2 = get_hmap(out, self.args, **kwargs)
if self.adaptive_policy:
mask2 = self.policy_net2(x2, **kwargs)
else:
mask2 = handcraft_policy_for_masks(x2, out, self.num_channels, self.use_current, self.args)
out = fuse_out_with_mask(out, mask2, h_map_updated2, self.args)
mask2 = mask2.view((-1, self.args.num_segments) + mask2.shape[1:])
else:
mask2 = None
if self.downsample0 is not None:
y = self.downsample0(x)
identity = self.downsample1(y)
out += identity
out = self.relu(out)
return out, mask.view((-1, self.args.num_segments) + mask.shape[1:]), mask2
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample0=None, downsample1=None, groups=1,
base_width=64, dilation=1, norm_layer=None, shared=None, shall_enable=None, args=None):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample0 = downsample0
self.downsample1 = downsample1
self.stride = stride
self.args = args
self.shall_enable = shall_enable
self.num_channels = width
self.adaptive_policy = not any([self.args.gate_all_zero_policy,
self.args.gate_all_one_policy,
self.args.gate_only_current_policy,
self.args.gate_random_soft_policy,
self.args.gate_random_hard_policy,
self.args.gate_threshold])
if self.shall_enable==False and self.adaptive_policy:
self.adaptive_policy=False
self.use_current=True
else:
self.use_current=False
if self.adaptive_policy:
self.policy_net = PolicyBlock(in_planes=inplanes, out_planes=width, norm_layer=norm_layer, shared=shared, args=args)
if self.args.dense_in_block:
self.policy_net2 = PolicyBlock(in_planes=width, out_planes=width, norm_layer=norm_layer, shared=shared, args=args)
if self.args.gate_history_conv_type in ['ghost', 'ghostbnrelu']:
self.gate_hist_conv = conv3x3(width, width, groups=width)
if self.args.gate_history_conv_type == 'ghostbnrelu':
self.gate_hist_bnrelu = nn.Sequential(norm_layer(width), nn.ReLU(inplace=True))
def count_flops(self, input_data_shape, **kwargs):
conv1_flops, conv1_out_shape = count_conv2d_flops(input_data_shape, self.conv1)
conv2_flops, conv2_out_shape = count_conv2d_flops(conv1_out_shape, self.conv2)
conv3_flops, conv3_out_shape = count_conv2d_flops(conv2_out_shape, self.conv3)
if self.downsample0 is not None:
downsample0_flops, _ = count_conv2d_flops(input_data_shape, self.downsample0)
else:
downsample0_flops = 0
return [conv1_flops, conv2_flops, conv3_flops, downsample0_flops, 0], conv3_out_shape
def forward(self, x, **kwargs):
identity = x
# shift operations
if self.args.shift:
x = shift(x, self.args.num_segments, fold_div=self.args.shift_div, inplace=False)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
# gate functions
h_map_updated = get_hmap(out, self.args, **kwargs)
if self.args.gate_history_conv_type in ['ghost', 'ghostbnrelu']:
h_map_updated = self.gate_hist_conv(h_map_updated)
if self.args.gate_history_conv_type == 'ghostbnrelu':
h_map_updated = self.gate_hist_bnrelu(h_map_updated)
if self.adaptive_policy:
mask = self.policy_net(x, **kwargs)
else:
mask = handcraft_policy_for_masks(x, out, self.num_channels, self.use_current, self.args)
out = fuse_out_with_mask(out, mask, h_map_updated, self.args)
x2 = out
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
# gate functions
if self.args.dense_in_block:
h_map_updated2 = get_hmap(out, self.args, **kwargs)
if self.adaptive_policy:
mask2 = self.policy_net2(x2, **kwargs)
else:
mask2 = handcraft_policy_for_masks(x2, out, self.num_channels, self.use_current, self.args)
out = fuse_out_with_mask(out, mask2, h_map_updated2, self.args)
mask2 = mask2.view((-1, self.args.num_segments) + mask2.shape[1:])
else:
mask2 = None
out = self.conv3(out)
out = self.bn3(out)
if self.downsample0 is not None:
y = self.downsample0(x)
identity = self.downsample1(y)
out += identity
out = self.relu(out)
return out, mask.view((-1, self.args.num_segments) + mask.shape[1:]), mask2
class BateNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None, args=None):
super(BateNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = norm_layer(self.inplanes)
self.args = args
if self.args.shared_policy_net:
self.gate_fc0s = nn.ModuleDict()
self.gate_fc1s = nn.ModuleDict()
else:
self.gate_fc0s = None
self.gate_fc1s = None
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64 * 1, layers[0], layer_offset=0)
self.layer2 = self._make_layer(block, 64 * 2, layers[1],
stride=2, dilate=replace_stride_with_dilation[0], layer_offset=layers[0])
self.layer3 = self._make_layer(block, 64 * 4, layers[2],
stride=2, dilate=replace_stride_with_dilation[1], layer_offset=layers[0] + layers[1])
self.layer4 = self._make_layer(block, 64 * 8, layers[3],
stride=2, dilate=replace_stride_with_dilation[2], layer_offset=layers[0] + layers[1] + layers[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
if self.args.policy_attention:
self.attention_fc0 = nn.Linear(16*3, 16)
self.attention_relu = nn.ReLU(inplace=True)
self.attention_bn = nn.BatchNorm1d(16)
self.attention_fc1 = nn.Linear(16, 1)
normal_(self.attention_fc0.weight, 0, 0.001)
constant_(self.attention_fc0.bias, 0)
normal_(self.attention_fc1.weight, 0, 0.001)
constant_(self.attention_fc1.bias, 0)
nn.init.constant_(self.attention_bn.weight, 1)
nn.init.constant_(self.attention_bn.bias, 0)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
zero_init_residual = args.zero_init_residual
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
# for bn in m.bn2s:
# nn.init.constant_(bn.weight, 0)
nn.init.constant_(m.bn2.weight, 0)
def update_shared_net(self, in_planes, out_planes):
in_factor = 1
out_factor = 2
if self.args.gate_history:
in_factor = 2
if not self.args.gate_no_skipping:
out_factor = 3
if self.args.relative_hidden_size > 0:
hidden_dim = int(self.args.relative_hidden_size * out_planes // self.args.granularity)
elif self.args.hidden_quota > 0:
hidden_dim = self.args.hidden_quota // (out_planes // self.args.granularity)
else:
hidden_dim = self.args.gate_hidden_dim
in_dim = in_planes * in_factor
out_dim = out_planes * out_factor // self.args.granularity
out_dim = out_dim // 64 * (self.args.gate_channel_ends - self.args.gate_channel_starts)
keyword = "%d_%d" % (in_dim, out_dim)
if keyword not in self.gate_fc0s:
self.gate_fc0s[keyword] = nn.Linear(in_dim, hidden_dim)
self.gate_fc1s[keyword] = nn.Linear(hidden_dim, out_dim)
normal_(self.gate_fc0s[keyword].weight, 0, 0.001)
constant_(self.gate_fc0s[keyword].bias, 0)
normal_(self.gate_fc1s[keyword].weight, 0, 0.001)
constant_(self.gate_fc1s[keyword].bias, 0)
def _make_layer(self, block, planes_list_0, blocks, stride=1, dilate=False, layer_offset=-1):
norm_layer = self._norm_layer
downsample0 = None
downsample1 = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes_list_0 * block.expansion:
downsample0 = conv1x1(self.inplanes, planes_list_0 * block.expansion, stride)
downsample1 = norm_layer(planes_list_0 * block.expansion)
_d={1:0, 2:1, 4:2, 8:3}
layer_idx = _d[planes_list_0//64]
if len(self.args.enabled_layers) > 0:
enable_policy = layer_offset in self.args.enabled_layers
print("stage-%d layer-%d (abs: %d) enabled:%s"%(layer_idx, 0, layer_offset, enable_policy))
elif len(self.args.enabled_stages) > 0:
enable_policy = layer_idx in self.args.enabled_stages
else:
enable_policy = (layer_idx >= self.args.enable_from and layer_idx < self.args.disable_from)
if self.args.shared_policy_net and enable_policy:
self.update_shared_net(self.inplanes, planes_list_0)
layers = nn.ModuleList()
layers.append(block(self.inplanes, planes_list_0, stride, downsample0, downsample1, self.groups,
self.base_width, previous_dilation, norm_layer, shared=(self.gate_fc0s, self.gate_fc1s), shall_enable=enable_policy, args=self.args))
self.inplanes = planes_list_0 * block.expansion
for k in range(1, blocks):
if len(self.args.enabled_layers) > 0:
enable_policy = layer_offset + k in self.args.enabled_layers
print("stage-%d layer-%d (abs: %d) enabled:%s" % (layer_idx, k, layer_offset + k, enable_policy))
if self.args.shared_policy_net and enable_policy:
self.update_shared_net(self.inplanes, planes_list_0)
layers.append(block(self.inplanes, planes_list_0, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer, shared=(self.gate_fc0s, self.gate_fc1s), shall_enable=enable_policy, args=self.args))
return layers
def count_flops(self, input_data_shape, **kwargs):
flops_list = []
_B, _T, _C, _H, _W = input_data_shape
input2d_shape = _B*_T, _C, _H, _W
flops_conv1, data_shape = count_conv2d_flops(input2d_shape, self.conv1)
data_shape = data_shape[0], data_shape[1], data_shape[2]//2, data_shape[3]//2 #TODO pooling
for li, layers in enumerate([self.layer1, self.layer2, self.layer3, self.layer4]):
for bi, block in enumerate(layers):
flops, data_shape = block.count_flops(data_shape, **kwargs)
flops_list.append(flops)
return flops_list
def forward(self, input_data, **kwargs):
# TODO x.shape (nt, c, h, w)
if "tau" not in kwargs:
kwargs["tau"] = 1
kwargs["inline_test"] = True
mask_stack_list = [] # TODO list for t-dimension
for _, layers in enumerate([self.layer1, self.layer2, self.layer3, self.layer4]):
for _, block in enumerate(layers):
mask_stack_list.append(None)
if self.args.dense_in_block:
mask_stack_list.append(None)
x = self.conv1(input_data)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
idx = 0
for li, layers in enumerate([self.layer1, self.layer2, self.layer3, self.layer4]):
for bi, block in enumerate(layers):
x, mask, mask2 = block(x, **kwargs)
mask_stack_list[idx] = mask
idx += 1
if self.args.dense_in_block:
mask_stack_list[idx] = mask2
idx += 1
x = self.avgpool(x)
x = torch.flatten(x, 1)
out = self.fc(x)
if self.args.policy_attention:
mask_stat_list=[]
for mask_stack in mask_stack_list:
mask_stat = torch.stack([torch.mean(mask_stack[:, :, :, act_i], dim=-1) for act_i in range(3)], dim=-1)
mask_stat_list.append(mask_stat)
mask_stat_tensor = torch.stack(mask_stat_list, dim=-2)
att_input = mask_stat_tensor.view(x.shape[0], len(mask_stack_list) * 3)
att_mid = self.attention_fc0(att_input)
att_mid = self.attention_bn(att_mid)
att_mid = self.attention_fc1(att_mid)
attention = torch.softmax(att_mid.view(-1, self.args.num_segments), dim=-1).clamp(min=1e-8)
return out, mask_stack_list, attention
else:
return out, mask_stack_list
def _batenet(arch, block, layers, pretrained, progress, **kwargs):
model = BateNet(block, layers, **kwargs)
if pretrained:
pretrained_dict = load_state_dict_from_url(model_urls[arch],
progress=progress)
# TODO okay now let's load ResNet to DResNet
model_dict = model.state_dict()
kvs_to_add = []
old_to_new_pairs = []
keys_to_delete = []
for k in pretrained_dict:
# TODO layer4.0.downsample.X.weight -> layer4.0.downsampleX.weight
if "downsample.0" in k:
old_to_new_pairs.append((k, k.replace("downsample.0", "downsample0")))
elif "downsample.1" in k:
old_to_new_pairs.append((k, k.replace("downsample.1", "downsample1")))
for del_key in keys_to_delete:
del pretrained_dict[del_key]
for new_k, new_v in kvs_to_add:
pretrained_dict[new_k] = new_v
for old_key, new_key in old_to_new_pairs:
pretrained_dict[new_key] = pretrained_dict.pop(old_key)
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
return model
def batenet18(pretrained=False, progress=True, **kwargs):
r"""ResNet-18 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _batenet('batenet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
**kwargs)
def batenet34(pretrained=False, progress=True, **kwargs):
r"""ResNet-34 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _batenet('batenet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
**kwargs)
def batenet50(pretrained=False, progress=True, **kwargs):
r"""ResNet-50 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _batenet('batenet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
**kwargs)
def batenet101(pretrained=False, progress=True, **kwargs):
r"""ResNet-101 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _batenet('batenet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
**kwargs)
def batenet152(pretrained=False, progress=True, **kwargs):
r"""ResNet-152 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _batenet('batenet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
**kwargs)